

Hochschule Albstadt-Sigmaringen

Albstadt-Sigmaringen University

Defeating the Secrets of OTP Apps

M.A., M.Sc. Philip Polleit, Friedrich-Alexander-Universität, Erlangen Dr.-Ing., Michael Spreitzenbarth, Friedrich-Alexander-Universität, Erlangen

philip@polleit.de

Wednesday, May 9th, Hamburg

// Agenda

- Introduction
- Forensic Use
- Background
- Research
- Results
- Conclusion

• Information age requires secure authentication

- Information age requires secure authentication
- "Bitkom" sets damage caused by data theft at yearly
 € 55 billion (2017, Germany only)

- Information age requires secure authentication
- Bitkom" sets damage caused by data theft at yearly
 € 55 billion (2017, Germany only)
- August 2013: Three Billion Yahoo Accounts affected

- Information age requires secure authentication
- Bitkom" sets damage caused by data theft at yearly
 € 55 billion (2017, Germany only)
- August 2013: Three Billion Yahoo Accounts affected
- April 2015: IS Hackers capture **TV5Monde** and spread own messages (password was readable on TV)

- Information age requires secure authentication
- Bitkom" sets damage caused by data theft at yearly
 € 55 billion (2017, Germany only)
- August 2013: Three Billion Yahoo Accounts affected
- April 2015: IS Hackers capture **TV5Monde** and spread own messages (password was readable on TV)
- July 2017: BKA reports database with 500 million "stolen" e-mail addresses (incl. passwords)

- Information age requires secure authentication
- Bitkom" sets damage caused by data theft at yearly
 € 55 billion (2017, Germany only)
- August 2013: Three Billion Yahoo Accounts affected
- April 2015: IS Hackers capture **TV5Monde** and spread own messages (password was readable on TV)
- July 2017: BKA reports database with 500 million "stolen" e-mail addresses (incl. passwords)
- May 2018: **Twitter** prompts users to change their passwords (as they saved these **unencrypted**).

- Information age requires secure authentication
- Bitkom" sets damage caused by data theft at yearly
 € 55 billion (2017, Germany only)
- August 2013: Three Billion Yahoo Accounts affected
- April 2015: IS Hackers capture **TV5Monde** and spread own messages (password was readable on TV)
- July 2017: BKA reports database with 500 million "stolen" e-mail addresses (incl. passwords)
- May 2018: **Twitter** prompts users to change their passwords (as they saved these **unencrypted**).
- —> Weak PW (user) / unsalted Hashes (provider)

"lemotdepassedeyoutube"

(\mathbf{i})

 Multi-factor Authentication (MFA) provides options to overcome the risks presented

- Multi-factor Authentication (MFA) provides options to overcome the risks presented
- Factors can be divided into three categories

- Multi-factor Authentication (MFA) provides options to overcome the risks presented
- Factors can be divided into three categories
 - "Knowledge" (passwords, user names, PINs)
 - "Being" (e.g. fingerprint, biometric features)
 - "Possession" (hardware token, credit card, key)

- Multi-factor Authentication (MFA) provides options to overcome the risks presented
- Factors can be divided into three categories
 - "Knowledge" (passwords, user names, PINs)
 - "Being" (e.g. fingerprint, biometric features)
 - "Possession" (hardware token, credit card, key)
- Classic implementation is SecurID token from "RSA"

- Multi-factor Authentication (MFA) provides options to overcome the risks presented
- Factors can be divided into three categories
 - "Knowledge" (passwords, user names, PINs)
 - "Being" (e.g. fingerprint, biometric features)
 - "Possession" (hardware token, credit card, key)
- Classic implementation is SecurID token from "RSA"
- "Tokenless" MFA is implemented by software

- Multi-factor Authentication (MFA) provides options to overcome the risks presented
- Factors can be divided into three categories
 - "Knowledge" (passwords, user names, PINs)
 - "Being" (e.g. fingerprint, biometric features)
 - "Possession" (hardware token, credit card, key)
- Classic implementation is SecurID token from "RSA"
- "Tokenless" MFA is implemented by software
- Popular forms are so-called 2FA apps f
 ür smartphones that generate OTPs ("one-time password")

- Multi-factor Authentication (MFA) provides options to overcome the risks presented
- Factors can be divided into three categories

vords, user names, PINs) rint, biometric features) vare token, credit card, key)

SecurID token from "RSA"

- "Tokenless" MFA is implemented by software
- Popular forms are so-called 2FA apps f
 ür smartphones that generate OTPs ("one-time password")

- Multi-factor Authentication (N overcome the risks presented
- Factors can be divided into thre 64

- "Tokenless" MFA is implement
- Popular forms are so-called 2F. generate OTPs ("one-time pass

Central question of any criminal procedure is "Causality"

- Central question of any criminal procedure is "Causality"
- Computer forensic consideration proofs whether the

- Central question of any criminal procedure is "Causality"
- Computer forensic consideration proofs whether the court exhibit (i.e. PC) was used as an instrument of crime

- Central question of any criminal procedure is "Causality"
- Computer forensic consideration proofs whether the court exhibit (i.e. PC) was used as an instrument of crime
- Consideration literally stops at the "keyboard"

- Central question of any criminal procedure is "Causality"
- Computer forensic consideration proofs whether the court exhibit (i.e. PC) was used as an instrument of crime
- Consideration literally stops at the "keyboard"
- 2FA app examination puts the user (perpetrator) into focus

- Central question of any criminal procedure is "Causality"
- Computer forensic consideration proofs whether the court exhibit (i.e. PC) was used as an instrument of crime
- Consideration literally stops at the "keyboard"
- 2FA app examination puts the user (perpetrator) into focus
- Otherwise defense strategy could be: "it wasn't me"

- Central question of any criminal procedure is "Causality"
- Computer forensic consideration proofs whether the court exhibit (i.e. PC) was used as an instrument of crime
- Consideration literally stops at the "keyboard"
- 2FA app examination puts the user (perpetrator) into focus
- Otherwise defense strategy could be: "it wasn't me"
- However analyzing authentication process closes the gap

- Central question of any criminal procedure is "Causality"
- Computer forensic consideration proofs whether the court exhibit (i.e. PC) was used as an instrument of crime
- Consideration literally stops at the "keyboard"
- 2FA app examination puts the user (perpetrator) into focus
- Otherwise defense strategy could be: "it wasn't me"
- However analyzing authentication process closes the gap
- Chain of evidence could be closed

// Forensic Use

// Forensic Use

 Leslie Lamport formulated idea of using OTP in November 1981

- Leslie Lamport formulated idea of using OTP in November 1981
- $S = H(r_a \parallel ggKW)$, see RFC 2289

- Leslie Lamport formulated idea of using OTP in November 1981
- $S = H(r_a \parallel ggKW)$, see RFC 2289
- Of <u>central importance</u> is the "shared secret" (ggKW), as an essential basis for calculating the OTP

- Leslie Lamport formulated idea of using OTP in November 1981
- $S = H(r_a \parallel ggKW)$, see RFC 2289
- Of <u>central importance</u> is the "shared secret" (ggKW), as an essential basis for calculating the OTP
- Three different types can be distinguished:
 - time-controlled method
 - challenge-response controlled method
 - event-driven method

- Leslie Lamport formulated idea of using OTP in November 1981
- $S = H(r_a \parallel ggKW)$, see RFC 2289
- Of <u>central importance</u> is the "shared secret" (ggKW), as an essential basis for calculating the OTP
- Three different types can be distinguished:
 - time-controlled method
 - challenge-response controlled method
 - event-driven method
- Security of the 2FA app strongly depends on integrity of the operating system

// Research

• The samples (2FA apps) were examined whether they

• The samples (2FA apps) were examined whether they

- The samples (2FA apps) were examined whether they
 - analyse the **environmental-integrity** during setup

- The samples (2FA apps) were examined whether they
 - analyse the environmental-integrity during setup
 - **encrypt** the "shared secret" (and how)

- The samples (2FA apps) were examined whether they
 - analyse the environmental-integrity during setup
 - **encrypt** the "shared secret" (and how)
 - allow **cloning** of the database (with stored secrets)

- The samples (2FA apps) were examined whether they
 - analyse the environmental-integrity during setup
 - **encrypt** the "shared secret" (and how)
 - allow **cloning** of the database (with stored secrets)
 - disclose secrets due to network-traffic caused

- The samples (2FA apps) were examined whether they
 - analyse the environmental-integrity during setup
 - **encrypt** the "shared secret" (and how)
 - allow **cloning** of the database (with stored secrets)
 - disclose secrets due to network-traffic caused
 - enable stealing of "shared secret"

• Examination procedure

- Examination procedure
 - Determine most **popular 2FA** apps (cf. downloads)

- Examination procedure
 - Determine most **popular 2FA** apps (cf. downloads)
 - Install the apps via Google PlayStore

- Examination procedure
 - Determine most **popular 2FA** apps (cf. downloads)
 - Install the apps via Google PlayStore
 - Save "zero evidence" with a script (before execution)

- Examination procedure
 - Determine most **popular 2FA** apps (cf. downloads)
 - Install the apps via Google PlayStore
 - Save "zero evidence" with a script (before execution)
 - Record network-traffic during execution

- Examination procedure
 - Determine most **popular 2FA** apps (cf. downloads)
 - Install the apps via Google PlayStore
 - Save "zero evidence" with a script (before execution)
 - Record network-traffic during execution
 - **Re-backup** after execution and configuration

- Examination procedure
 - Determine most **popular 2FA** apps (cf. downloads)
 - Install the apps via Google PlayStore
 - Save "zero evidence" with a script (before execution)
 - Record network-traffic during execution
 - **Re-backup** after execution and configuration
 - Calculate the **differences** of both snapshots

- Examination procedure
 - Determine most **popular 2FA** apps (cf. downloads)
 - Install the apps via Google PlayStore
 - Save "zero evidence" with a script (before execution)
 - Record network-traffic during execution
 - **Re-backup** after execution and configuration
 - Calculate the **differences** of both snapshots
 - Analysis of the collected data

- Examination procedure
 - Determine most **popular 2FA** apps (cf. downloads)
 - Install the apps via Google PlayStore
 - Save "zero evidence" with a script (before execution)
 - Record network-traffic during execution
 - **Re-backup** after execution and configuration
 - Calculate the **differences** of both snapshots
 - Analysis of the collected data
 - Verification of the results using tests in AVD

Sample: "Google Authenticator"

Icon	Anwendung	Version	Hash (MD5)	Größe		
Google		4.74	2658652deea2a274c90e111135634e1f	6,9		
	Authenticator			MB		
Programmpfad:		/data/data/com.google.android.apps.authenticator2				
UID:		u0_a128				
Ablage Shared Secret:		{app_verz}/databases/databases (SQLite)				
Format des TOTP:		Dezimal (6-stellig)				
Shared Secret:		rffl4xngz3bzhe5g7fhji4rzra				

Sample: "Google Authenticator"

Icon	Anwendung	Version	Hash (MD5)	Größe		
	Google	4.74	2658652deea2a274c90e111135634e1f	6,9		
	Authenticator			MB		
Programmpfad:		/data/data/com.google.android.apps.authenticator2				
UID:		u0_a128				
Ablage Shared Secret:		{app_verz}/databases/databases (SQLite)				
Format des TOTP:		Dezimal (6-stellig)				
Shared Secret:		rffl4xngz3bzhe5g7fhji4rzra				

```
42:GA philip$ adb pull /data/data/
```

com.google.android.apps.authenticator2/databases/databases/

```
42:GA philip$ sqlite3 ./databases "select * from accounts" > google_authenticator_secret.txt
```

42:GA philip\$ cat google_authenticator_secret.txt 1|Dropbox| rffl4xngz3bzhe5g7fhji4rzra|0|0|0||Dropbox

42:GA philip\$

Sample: "Duo Mobile"

Icon	Anwendung	Version	Hash (MD5)	Größe		
Duo Mobile		3.16.1	afe74d12a8f4f9cb8e107727d0010727	12,3		
				MB		
Programmpfad:		/data/data/com.duosecurity.duomobile				
UID:		u0_a156				
Ablage Shared Secret:		{app_verz}/files/duokit/accounts.json				
Format des TOTP:		Dezimal (6-stellig)				
Shared Secret:		hvwb64jexhst5xg2rg5j5nfwci				

Sample: "Duo Mobile"

Icon	Anwendung	Version	Hash (MD5)	Größe		
Duo Mobile		3.16.1	afe74d12a8f4f9cb8e107727d0010727	12,3		
				МВ		
Programmpfad:		/data/data/com.duosecurity.duomobile				
UID:		u0_a156				
Ablage Shared Secret:		{app_verz}/files/duokit/accounts.json				
Format des TOTP:		Dezimal (6-stellig)				
Shared Secret:		hvwb64jexhst5xg2rg5j5nfwci				

42:Duo philip\$ adb pull /data/data/com.duosecurity.duomobile/files/ duokit/accounts.json

```
42:Duo philip$ cat accounts.json
[
{
"name": "philipevalu@wegwerfemail.info", "otpGenerator": {
```

"otpSecret": "HVWB64JEXHST5XG2RG5J5NFWCI" },

"logoUri": "android.resource://com.duosecurity.duomobile/drawable/ ic_dropbox"

}]

X = Yes; O = No; - = unwanted behavior; + = wanted behavior

2FA App Name	Cloning	Encrypted	Device	PIN	Secure	Secure
	Possible	Secret	Integrity Check	Protection	SSL-Connection	OTP-Push
Google Authenticator	X-	O-	O-	O-	N/A	N/A
Microsoft Authenticator	X-	0-	O-	0-	X+	0-
Authy 2-Factor Authentification	O+	0-	O-	X+	X+	N/A
DUO Mobile	X-	0-	X+	0-	X+	X+
FreeOTP	X-	0-	0-	0-	N/A	N/A
Sophos Authenticator	X-	0-	O-	0-	N/A	N/A
Push Authenticator	X-	0-	0-	0-	N/A	N/A
OTP Authenticator	O+	0-	O-	0-	N/A	N/A
Yandex.Key	O+	X+	0-	X+	N/A	N/A
Symantec VIP Access	O+	X+	0-	0-	X+	X+
2FA Token	X-	0-	O-	0-	N/A	N/A
Launchkey	X-	N/A	0-	X+	X+	N/A
CyAuth Cylocklite	Х-	X+	O-	0-	X+	N/A
Topicus KeyHub	X-	0-	0-	0-	X+	N/A
Latch	O+	X+	0-	0-	O-	N/A
Okta Verify	O+	X+	O-	O-	X+	N/A

• Security implementations vary greatly

- Security implementations vary greatly
- 50 % of apps do not encrypt "shared secret"

- Security implementations vary greatly
- 50 % of apps do not encrypt "shared secret"
- 12.5 % of the apps <u>only</u> use other **notation**

- Security implementations vary greatly
- 50 % of apps do <u>not</u> encrypt "shared secret"
- 12.5 % of the apps <u>only</u> use other **notation**
- Security strongly <u>dependent on OS</u>

- Security implementations vary greatly
- 50 % of apps do <u>not</u> encrypt "shared secret"
- 12.5 % of the apps <u>only</u> use other **notation**
- Security strongly <u>dependent on OS</u>
- 56 % of the apps allow **copying the DB**

- Security implementations vary greatly
- 50 % of apps do <u>not</u> encrypt "shared secret"
- 12.5 % of the apps <u>only</u> use other **notation**
- Security strongly <u>dependent on OS</u>
- 56 % of the apps allow **copying the DB**
- Only about 1/5 of the apps offer PIN protection

- Security implementations vary greatly
- 50 % of apps do <u>not</u> encrypt "shared secret"
- 12.5 % of the apps <u>only</u> use other **notation**
- Security strongly <u>dependent on OS</u>
- 56 % of the apps allow **copying the DB**
- Only about 1/5 of the apps offer PIN protection
- Only 44 % do not generate network traffic

• Pro 2FA-App

• Pro 2FA-App

- Comprehensive use of 2FA is recommended
- 2FA app reduces number of devices to carry
- SM have more (transparent) data/sensors

• Pro 2FA-App

- Comprehensive use of 2FA is recommended
- 2FA app reduces number of devices to carry
- SM have more (transparent) data/sensors
- Pro HW-Token

• Pro 2FA-App

- Comprehensive use of 2FA is recommended
- 2FA app reduces number of devices to carry
- SM have more (transparent) data/sensors
- Pro HW-Token
 - HW token self-sufficient -> no area of attack via remote
 - "Stealing" the "shared secret" <u>undermines factor property</u>
 - 2FA apps persuade to use a single device only
 - Spread of specific malware threatens 2FA apps
 - FIDO-Alliance combines secure hardware and PKI

Thank you for your attention Questions? 42!

Philip Polleit