

Exploring the processing of personal data in modern vehicles - A Proposal of a testbed for explorative research to achieve transparency for privacy and security

Alexandra Koch¹, Robert Altschaffel^{2,3}, <u>Stefan Kiltz</u>², Mario Hildebrandt², Jana Dittmann²

¹Otto-von-Guericke University of Magdeburg PO Box 4120, 39016 Magdeburg, Germany

²Otto-von-Guericke University of Magdeburg Dept. of Computer Science, Research Group Multimedia and Security PO Box 4120, 39016 Magdeburg, Germany

³ The work from Robert Altschaffel was supported by research projects in the field of automotive security

Introduction

- Modern vehicles as example for cyber-physical systems
- Cyber physical systems: deeply intertwined software and physical components perform an overall task [NSF18]
- Vehicles: highly complex and interconnected heterogenic systems with ressource-limited processing nodes

[NSF18] National Science Foundation: Cyber-Physical Systems (CPS); https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm, accessed: 09/02/18

Introduction

- IT-security in Automotive often (if at all) an afterthought, e.g. with field bus systems such as CAN used
- IT-security violations have the potential to impact safety [MiV15], but not only that! What about privacy/data protection?
- Data produced and stored inside the car during normal usage is on the increase (esp. with driver assistance systems)
- Planned and realized interconnection between cars, infrastructure and manufacturers add to the problem

General Background

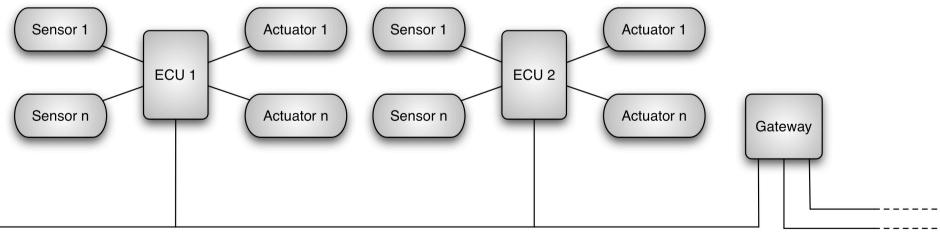
Legal requirements for storing additional data

- US American SELF Drive act [USC18] requires "a process for taking preventive and corrective action to mitigate against vulnerabilities [...] including incident response plans, intrusion detection and prevention systems" is established (SEC. 5).
- German road traffic regulation [StVG18] establishes: a set of required data to be stored for highly automated or fully autonomous driving functions, the vehicle is required to record position and time during handovers, transmission of these recorded data sets to legal authorities if they are required to investigate questions of liability
- Car data is personal data [FIA17] regarding the European General Data Protection Regulation (GDPR)
- GDPR lists transparency as a fundamental requirement for privacy protection [Pri17]

[USC18] US Congress: H.R.3388 - SELF DRIVE Act; https://www.congress.gov/bill/115th-congress/house-bill/3388/text, accessed: 09/02/18 [StVG18] Straßenverkehrsgesetz. https://www.gesetze-im-internet.de/stvg/BJNR004370909.html#BJNR004370909BJNG000800116, accessed: 12/12/2017 [FIA17] FIA: What EU legislation says about car data - Legal Memorandum on connected vehicles and data. http://mycarmydata.eu/wpcontent/uploads/2017/06/20170516-Legal-Memorandum-on-Personal-Data-in-Connected-Vehicles-www.pdf, accessed: 12/12/2017 [Pri17] Privacycompany: Overview of the EU General Data Protection Regulation(GDPR). https://www.privacycompany.eu/files/factsheet_GDPR.pdf, accessed: 12/12/2017 ref

General Background

- Examples for intransparent data collection [ADAC17]:
 - regular upload of vehicle position (as acquired by GPS), odometer, fuel consumption to the manufacturer's backend system
 - direct remote maintenance access to the vehicle communication bus
- Examples for transparent data collection by EDR [NHT+17]:
 - Speed difference (Delta-V), longitudinal; 0 to 250 ms or 0 to End of Event time plus 30 ms, whichever is shorter
 - Maximum Delta-V, longitudinal; 0 to 300 ms or 0 to End of Event time plus 30 ms, whichever is shorter
 - Time, Maximum Delta-V; 0 to 300 ms or 0 to End of Event time plus 30 ms, whichever is shorter


[ADAC17] ADAC: Welche Daten erzeugt ein modernes Auto?. https://www.adac.de/infotestrat/technik-undzubehoer/fahrerassistenzsysteme/daten_im_auto/default.aspx?ComponentId=260789&SourcePageId=8749&quer=daten, accessed: 12/12/2017 [NHT+17] NHTSA EDR Working Group: Event Data Recorders. https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/nhtsa_edrtruckbusfinal.pdf, accessed: 12/12/2017

Understanding (privacy-related) data in modern

automotive systems

- Automotive infrastructure: Data processing facilities in Electronic Control Units (ECU) implementing measurement processes and open/closed control loops
- Sensors digitizing aspects of the automotive environment, actuators manipulating aspects of the physical world as instructed by the software code in the ECU
- ECU contains one or more Micro Controller Units (MCU)

Understanding (privacy-related) data in modern automotive systems

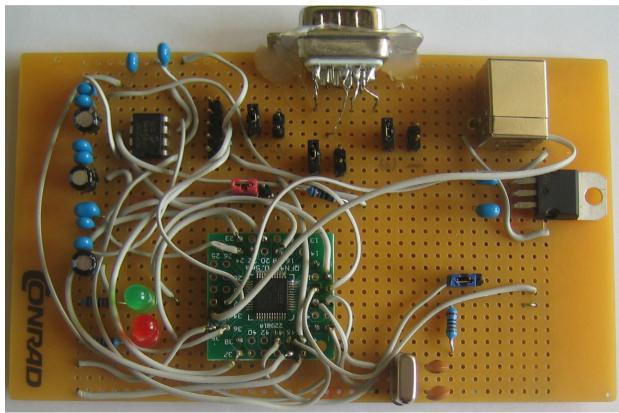
- Mass storage contains programme data, configuration data in internal and/or external non-volatile memory, internal version often difficult to access
- Main memory often on-chip in the MCU, sometimes contained in an extra PCB, notoriously difficult to access from outside the MCU
- Network data typically easy accessible using the field bus system

Understanding (privacy-related) data in modern

automotive systems

- Forensic models e.g. [KDV15] and tools necessary to comprehensively access all data,
- Ideally as raw data but with semantics to extract other data types (nowadays only achieved in field bus communication)
- Neither the automotive infrastructure nor data extraction using garage tools is even close to forensically sound (e.g. integrity, authenticity, non-repudiation)
- Automotive forensics must make do with what is available, often only access to pre-processed data using self-monitoring diagnosis routines builtin the MCU, producing Diagnostic Trouble Codes (DTC)

A concept for a demonstrator to identify hidden data in vehicles


- General idea: The "vehicle", aka the demonstrator needs to be in a realistic state of operation
- Main principles:
 - Completeness (Availability of all relevant hardware/software of a vehicle, but removal of hazardous elements for safety, e.g. explosive SRS actuators, fuel system, coolant system)
 - Realisitic input for the sensors (replacement strategies for unavailabe sensors based on their physical, electrical or electronic characteristics, research into signal shapes and ranges)
 - Monitoring of the three data streams (mass storage, main memory, network), access to network data is the easiest, involves wire tracing if lacking schematics

A concept for a demonstrator to identify hidden data

in vehicles – network data

 Tapping into bus communication using interface PCBs, such as CANtact [Eve18], CANtact truly open source, down to component level

[Eve18] E. Evenchick: CANtact-The Open Source Car Tool. http://linklayer.github.io/cantact/, accessed 02/05/2018

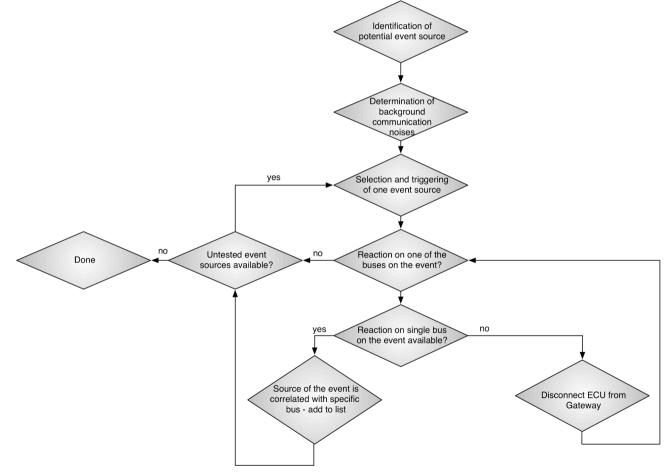
A concept for a demonstrator to identify hidden data

in vehicles – network data

- Bus systems often separated according to functionality, e.g. powertrain-bus, instrumentation bus, etc.
- Various implementation methods for bus systems, e.g. twisted copper wire, glass fibre etc. and topologies (star, ring, etc.)
- Central gateway ECU to manage buses (incl. inter-bus communication)
- Challenge: add semantics to collected raw data, especially with payloads spanning over multiple message frames

Field	Start- of- Frame	Identifier (ID)	Remote transmission flag	Identifier extension bit	Reserved	Data length code	Data	CRC	CRC delimited	ACK slot	ACK delimit er	End of Frame
Bits	1	11	1	1	1	4	0-64	15	1	1	1	7

Exemplary CAN bus [Cor18] frame


[Cor18] Corrigan, S.: Introduction to the Controller Area Network (CAN) http://www.ti.com/lit/an/sloa101b/sloa101b.pdf, accessed 02/05/2018

A concept for a demonstrator to identify hidden data

in vehicles – network data

Solving the semantic challenge: systematic testing

A concept for a demonstrator to identify hidden data in vehicles – mass storage data

- Access to mass storage as external chips typically using the Serial Programming Interface (SPI) [Mot17]
- Mass storage in MCU maybe accessible using debug interfaces, e.g. JTAG [Joh17], BDM [Fre17]
- Fuses can thwart read attempts, often used to protect intellectual property

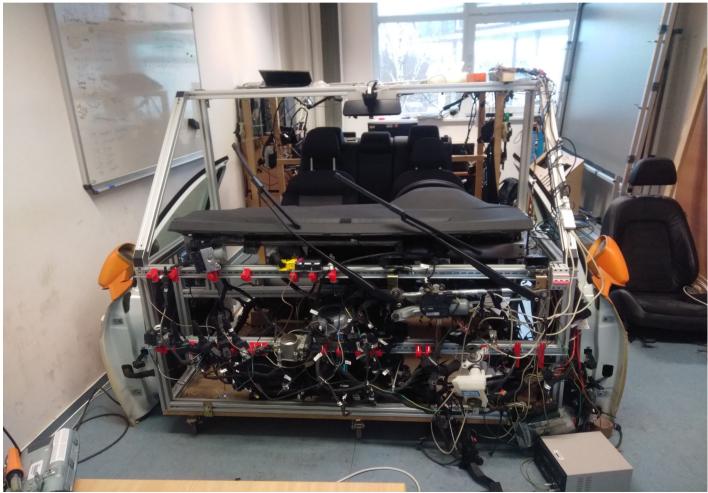
[Mot17] Motorola Inc.: SPI Block Guide V0306. https://web.archive.org/web/20150413003534/http://www.ee.nmt.edu/~teare/ee308I/datasheets/S12SPIV3.pdf, accessed 14/12/2017

[Fre17] Freescale Semiconductor: Introduction to HCS08 Background Debug Mode, http://www.nxp.com/assets/documents/data/en/applicationnotes/AN3335.pdf, accessed: 12/12/2017

[Joh17] Johnson, R.; Christie, S.: JTAG 101 IEEE 1149.x and Software Debug, https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/jtag-101-ieee-1149x-paper.pdf, 2009, accessed: 12/12/2017

A concept for a demonstrator to identify hidden data in vehicles – mass storage data

- Access typicall requires component-level modification (soldering of wires etc.)
- High-level access to a subset of mass storage using diagnostic equipment (often EEPROM configuration data, FLASH for programme memory)
- Integrity/Authenticity with garage equipment is not ensured!


A concept for a demonstrator to identify hidden data in vehicles – main memory data (volatile)

- Main memory data most volatile, often only valid for fractions of a second
- Raw access to process, programme and real-time data most challenging
- Debug interfaces might be successful, but very unlikely
- Preprocessed real-time data, as understood by the ECU, retrievable using garage equipment
- Integrity/Authenticity with garage equipment is not ensured!

Practical implementation of a demonstrator to identify hidden data in vehicles – front section

• Updating an existing demonstrator with VW Golf Mk 7 parts



IMF2018, Hamburg, Germany May 7th-9th

Practical implementation of a demonstrator to identify hidden data in vehicles – middle section

• Updating an existing demonstrator with VW Golf Mk 7 parts

Practical implementation of a demonstrator to identify hidden data in vehicles – rear section

• Updating an existing demonstrator with VW Golf Mk 7 parts

Practical implementation of a demonstrator to identify hidden data in vehicles – CAN access

 Using existing packages cansniffer [canu17] and canutils [canu17] access to CAN bus network using CANtact [Eve18] hardware

45 delta	ID	data					•	< cansniffer	comfort	#	l=20	h=100	t=500	>
0.199902	40	9B 01 00	09	C1	00	00	00							
0.199494	FD	49 DF 1F	80	00	00	04	00	I						
0.199953	101	4F 00 91	00	82	02	40	00	0@.						
0.200142	116	8B 09 00	00	20	80	00	FF							
0.999618	184	A2 0B 00	00	00	00	00	00							
0.200303	30B	7F 21 00	00	08	00	00	00							
0.249778	30D	05 00 00	00											
0.199547	31B	D3 7F 00	00	41	00	00	00	A						
0.199885	31E	C2 ED 3F	00	00	00	00	00	?						
0.200246	3C0	35 OF 03	00					5						
0.200523	3C7	FE 00 24	00	00	40	Α3	00	\$@						
1.000372	3D4	42 OF 80	06	00	00	00	00	B						
0.200493	3D5	98 OF 00	04	00	00	00	00							
0.200259	3D6	0F 00 01	00	00	00	00	00							
0.000000	3DA	38 06 1A	00	00	F1	FF	00	8						
0.199276	520	15 OC 00	08	00	ΘA	00	00							
0.200192	584	BD 07 00	00	00	00									
1.429899	5F0	<mark>84</mark> 00 64	00	00	00	00	00	d						
1.460590	5F2	1D 00												
1.000350	641	EB 1C 1F	4F	14	0C	4D	02	OM.						
0.499435	647	5C FD FF	7F	00	00	00	0B	\						
1.000456	65D	60 3B 2B	12	00	42	62	7A	`;+ Bbz						
1.000366	6B0	B0 01 79	02	7F	37			y7						
0.999756	6B2	01 42 31	20	59	0E	04	09	.B1 Y						
0.200222	6B4	02 57 31	37	34	33	30	36	.W174306						
1.000355	6B6	B0 12 1C	00	02	13									

comfort	1B00004B	[8]	4B	00	04	04	11	00	00	00
comfort	0FD	[8]	52	D9	1F	80	00	00	04	00
comfort	3B5	[8]	00	FE	20	02	0C	00	28	00
comfort	3E9	[8]	FE	F8	DF	FF	00	00	00	00
comfort	5EA	[8]	00	00	00	36	F8	FE	FB	FF
comfort	5EB	[8]	00	00	FE	FE	FB	٥F	80	FF
comfort	17F00046	[8]	20	46	00	00	00	00	00	80
comfort	6B5	[8]	FD	83	FD	03	FD	00	FD	07
comfort	3CE	[8]	00	00	00	00	00	00	00	00
comfort	3D0	[8]	02	00	00	00	04	00	00	00
comfort	107	[8]	00	00	00	00	40	00	00	00
comfort	101	[8]	62	0A	91	00	82	00	00	00
comfort	3BE	[8]	00	00	07	01	22	C0	E8	07
comfort	0FD	[8]	1E	DA	1F	80	00	00	04	00
comfort	3CF	[8]	00	00	00	00	00	00	00	00
comfort	551	[8]	E1	22	64	23	02	00	00	00
comfort	3D1	[8]	02	00	00	00	04	00	00	00
comfort	107	[8]	00	00	00	00	40	00	00	00
comfort	101	[8]	06	0B	91	00	82	00	00	00
comfort	30D	[4]	01	00	00	00				
comfort	30B	[8]	7F	29	00	00	08	00	00	00
comfort	31E	[8]	2D	E5	3F	00	00	00	00	00
comfort	3DC	[8]	FC	00	00	00	00	41	00	00
comfort	3DA	[8]	38	06	1A	00	00	F1	FF	00
comfort	040	[8]	CA	09	00	09	C1	00	00	00
comfort	0FD	[8]	31	DB	1F	80	00	00	04	00
comfort	31B	[8]	76	77	00	00	41	00	00	00
comfort	3EB	[8]	FD	FE	00	FE	00	00	00	00
comfort	107	[8]	00	00	00	00	40	00	00	00
comfort	6B4	[8]	00	B8	21	84	1A	57	56	57
comfort	101	[8]	15	0C	91	00	82	00	00	00
comfort	1B000014	[8]	14	00	04	03	01	00	00	00
comfort	3C0	[4]	C5	0C	03	00				
comfort	3D5	[8]	65	0C	00	04	00	00	00	00
comfort	3D6	[8]	0C	00	01	00	00	00	00	00
comfort	583	[8]	00	10	05	00	00	00	54	00
comfort	584	[6]	17	0E	00	00	00	00		
comfort	5A0	[5]	FE	FE	03	0E	00			
comfort	5E1	[8]	8E	2A	00	60	FE	00	00	00
comfort	5F0	[8]	83	00	64	00	00	00	00	00
comfort	17F0000C	[8]	20	0C	00	00	00	00	00	80
comfort	0FD	[8]	A8	DC	1F	80	00	00	04	00

[canu17] can-utils, https://packages.ubuntu.com/de/source/trusty/can-utils, accessed: 12/12/2017 [Eve18] E. Evenchick: CANtact-The Open Source Car Tool. http://linklayer.github.io/cantact/, accessed 02/05/2018

Practical implementation of a demonstrator to identify hidden data in vehicles – first reconstructions

• First semantics discovered using the decision tree and the CAN HW/SW

	DL								Posit	tion								Manaira
ID	С	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Meaning
						1/0/8												hazard warning lights/ direction indicator left/ right
									1									sound right
									2/3									indicator left
									4/5									indicator right
									6/7									indicator left+right
									8/9									control light + sound left
366	16								A/B									control light + sound + indicator left
									C/D									control light + sound left + indicator right
									E/F									sound + control light + indicator left + indicator right
								z										Z = odd numbers: control light + sound right
		?	?	?	?	?	?			?	?	?	?	?	?	?	?	

Steering column lever functionality

Practical implementation of a demonstrator to identify hidden data in vehicles – first reconstructions

• First semantics discovered using the decision tree and the CAN HW/SW

	DL	-							Positio	n						c		
ID	C	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Meaning
									0/1/4/5/6									Error airbag
									2/3/7									Airbag/ belt tensioners off + Error Airbag
									8/9									no Error (maybe because all Airbags are working)
									C/D									passenger airbag off
40	16								A/B/E/F			2						Airbag/ belt tensioners off
											0							all strapped
											1	2						driver not strapped + passenger strapped
											2							driver strapped + passenger not strapped
											3							no one strapped
	2	?	?	?	?	?	?	?		?		?	?	?	?	?	?	

SRS Sensors

Conclusion and future questions

- Establishment of a demonstrator for forensics and privacy research
- Usage of actual automotive parts and control circuits (incl. sensors and acutators) to gain realistic results
- Identification of data sources in ECU mass storage, main memory and network communication using IT-forensic principles and models
- Full low-level access to field bus networks established, research into semantics by cause and effect monitoring

- Future research to gain low-level access to main memory and mass storage data
- Generally establishment of forensically sound retrieval software
- Capability extension to investigate car2x communication

Thank you very much for your attention!

References

- [NSF18] National Science Foundation: Cyber-Physical Systems (CPS); https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm, accessed: 09/02/18
- [MiV15] C. Miller and C. Valesek, "Remote Exploitation of an Unaltered Passenger Vehicle," Black Hat USA, 2015.
- [USC18] US Congress: H.R.3388 SELF DRIVE Act; https://www.congress.gov/bill/115th-congress/house-bill/3388/text, accessed: 09/02/18
- [StVG18] Straßenverkehrsgesetz. https://www.gesetze-im-internet.de/stvg/BJNR004370909.html#BJNR004370909BJNG000800116, accessed: 12/12/2017
- [FIA17]FIA: What EU legislation says about car data Legal Memorandum on connected vehicles and data. http://mycarmydata.eu/wp-content/ uploads/2017/06/20170516-Legal-Memorandum-on-Personal-Data-in-Connected-Vehicles-www.pdf, accessed: 12/12/2017
- [Pri17] Privacycompany: Overview of the EU General Data Protection Regulation(GDPR). https://www.privacycompany.eu/files/ factsheet_GDPR.pd, accessed: 12/12/2017 ref
- [ADAC17] ADAC: Welche Daten erzeugt ein modernes Auto?. https://www.adac.de/infotestrat/technik-und-zubehoer/fahrerassistenzsysteme/ daten_im_auto/default.aspx?ComponentId=260789&SourcePageId=8749&quer=daten, accessed: 12/12/2017
- [NHT+17] NHTSA EDR Working Group: Event Data Recorders. https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/nhtsa_edrtruckbusfinal.pdf, accessed: 12/12/2017
- [KDV15] Kiltz, S.; Dittmann, J.; Vielhauer, C.: Supporting Forensic Design a Course Profile to Teach Forensics, IMF 2015, 2015
- [Eve18] E. Evenchick: CANtact-The Open Source Car Tool. http://linklayer.github.io/cantact/, accessed 02/05/2018
- [Cor18] Corrigan, S.: Introduction to the Controller Area Network (CAN) http://www.ti.com/lit/an/sloa101b/sloa101b.pdf, accessed 02/05/2018
- [Mot17] Motorola Inc.: SPI Block Guide V0306. https://web.archive.org/web/20150413003534/http://www.ee.nmt.edu/~teare/ee308l/datasheets/ S12SPIV3.pdf, accessed 14/12/2017
- [Fre17] Freescale Semiconductor: Introduction to HCS08 Background Debug Mode, http://www.nxp.com/assets/documents/data/en/ application-notes/AN3335.pdf, accessed: 12/12/2017
- [Joh17] Johnson, R.; Christie,S.: JTAG 101 IEEE 1149.x and Software Debug, https://www.intel.com/content/dam/www/public/us/en/ documents/white-papers/jtag-101-ieee-1149x-paper.pdf, 2009, accessed: 12/12/2017

[canu17] can-utils, https://packages.ubuntu.com/de/source/trusty/can-utils, accessed: 12/12/2017