On the Robustness of Random Walk Algorithms for the Detection of Unstructured P2P Botnets

Dominik Muhs ¹	Steffen Haas ²	Thorsten Strufe 1	Mathias Fischer ²

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

¹Technische Universität Dresden Dresden, Germany first.last@tu-dresden.de

²Universität Hamburg Hamburg, Germany first.last@informatik.uni-hamburg.de

I. Motivation

- I. Motivation
- II. Botnets
 - 1. Definition
 - 2. Graph Model

- I. Motivation
- II. Botnets
- Definition
 Graph Model
 III. Random Walks

- I. Motivation
- II. Botnets
 - 1. Definition
 - 2. Graph Model
- III. Random Walks
- IV. Analysis and Detection

- I. Motivation
- II. Botnets
 - 1. Definition
 - 2. Graph Model
- III. Random Walks
- IV. Analysis and Detection
- V. Limiting Knowledge

- I. Motivation
- II. Botnets
 - 1. Definition
 - 2. Graph Model
- III. Random Walks
- IV. Analysis and Detection
- V. Limiting Knowledge
- VI.Results

- I. Motivation
- II. Botnets
 - 1. Definition
 - 2. Graph Model
- III. Random Walks
- IV. Analysis and Detection
- V. Limiting Knowledge
- VI.Results
- VII.Conclusion

[9]

Device collection

- Device collection
- Internet-connected

- Device collection
- Internet-connected
- Malware-infected

- Device collection
- Internet-connected
- Malware-infected
- Remotely controlled (usually centralized)

[9]

Clickfraud

- Clickfraud
- Spam

- Clickfraud
- Spam
- DDoS attacks

- Clickfraud
- Spam
- DDoS attacks
- Cryptocurrency mining

- Clickfraud
- Spam
- DDoS attacks
- Cryptocurrency mining
- Intellectual property theft

Topological Categories

Centralized

Topological Categories

- Centralized
- Decentralized

Topological Categories

- Centralized
- Decentralized
 - Structured
 - Unstructured

• Central C2 server

- Central C2 server
- Star topology

- Central C2 server
- Star topology
- IRC/HTTP/...

- Central C2 server
- Star topology
- IRC/HTTP/...
- Single point of failure

Structured P2P Botnets

Structured P2P Botnets

• No C2 server

- No C2 server
- Hard to take down

- No C2 server
- Hard to take down
- Specific rule set

- No C2 server
- Hard to take down
- Specific rule set
- Kademlia, Chord

Randomized

- Randomized
- Evade topological matching

- Randomized
- Evade topological matching
- Statistical methods necessary

• Leverage graph models

- Leverage graph models
- ... and random walks

- Leverage graph models
- ... and random walks

- Leverage graph models
- ... and random walks
- Focus on structured botnets [10, 11, 12]

- Leverage graph models
- ... and random walks
- Focus on structured botnets [10, 11, 12]
- Do not use open technologies

- Leverage graph models
- ... and random walks
- Focus on structured botnets [10, 11, 12]
- Do not use open technologies
- Often assume complete knowledge on botnet communication

• Leverages random walks

- Leverages random walks
- Uses open-source technologies

- Leverages random walks
- Uses open-source technologies
- Tested on unstructured botnets

- Leverages random walks
- Uses open-source technologies
- Tested on unstructured botnets
- Precise when information is limited

- Leverages random walks
- Uses open-source technologies
- Tested on unstructured botnets
- Precise when information is limited
- Can be combined with other approaches

• No payload data needed

- No payload data needed
- Network operator's view

- No payload data needed
- Network operator's view
- Aggregated NetFlow data

- No payload data needed
- Network operator's view
- Aggregated NetFlow data
- Idea: extract wellconnected subgraph

- No payload data needed
- Network operator's view
- Aggregated NetFlow data
- Idea: extract wellconnected subgraph
- Approach: Random Walks

• n=10,000 walks

- n=10,000 walks
- Of length k=3

- n=10,000 walks
- Of length k=3
- With loss l=0.5

Probability Distribution

- n=10,000 walks
- Of length k=3
- With loss l=0.5
- Fast-mixing artifact

• Aggregate NetFlow data (Python 3.6, networkx)

- Aggregate NetFlow data (Python 3.6, networkx)
- Evaluation steps:
 - Botnet node mapping

- Aggregate NetFlow data (Python 3.6, networkx)
- Evaluation steps:
 - Botnet node mapping
 - Apply loss functions

- Aggregate NetFlow data (Python 3.6, networkx)
- Evaluation steps:
 - Botnet node mapping
 - Apply loss functions
- Execute random walks (numpy)

- Aggregate NetFlow data (Python 3.6, networkx)
- Evaluation steps:
 - Botnet node mapping
 - Apply loss functions
- Execute random walks (numpy)
- Normalize resulting probability distribution

- Aggregate NetFlow data (Python 3.6, networkx)
- Evaluation steps:
 - Botnet node mapping
 - Apply loss functions
- Execute random walks (numpy)
- Normalize resulting probability distribution
- Cluster walk destinations (DBSCAN)

The Test Dataset

	Carrier Graphs		Botnet Graphs	
	TW07	CTU11	ZA24	SA25
Network Diameter	7	12	5	5
Number of Nodes	66408	38130	4805	1422
Average Node Degree	2.103	2.062	187.415	416.769
Number of Edges	139628	78626	734010	592646
Average Path Length	3.959	2.808	2.163	1.776
Average Clustering Coefficient	7×10^{-4}	3×10^{-3}	0.327	0.605

The Test Dataset

	Carrier Graphs		Botnet Graphs	
	TW07	CTU11	ZA24	SA25
Network Diameter	7	12	5	5
Number of Nodes	66408	38130	4805	1422
Average Node Degree	2.103	2.062	187.415	416.769
Number of Edges	139628	78626	734010	592646
Average Path Length	3.959	2.808	2.163	1.776
Average Clustering Coefficient	7×10^{-4}	3×10^{-3}	0.327	0.605

• CTU11 from Czech Technical University

The Test Dataset

	Carrier Graphs			Botnet Graphs	
	TW07	CTU11	ſ	ZA24	SA25
Network Diameter	7	12		5	5
Number of Nodes	66408	38130		4805	1422
Average Node Degree	2.103	2.062		187.415	416.769
Number of Edges	139628	78626		734010	592646
Average Path Length	3.959	2.808		2.163	1.776
Average Clustering Coefficient	7×10^{-4}	3×10^{-3}		0.327	0.605

- CTU11 from Czech Technical University
- ZA24 ZeroAccess communication graph

 Other approaches do not evaluate limited network view

- Other approaches do not evaluate limited network view
- Unrealistic assumptions:
 - All communication relationships captured

- Other approaches do not evaluate limited network view
- Unrealistic assumptions:
 - All communication relationships captured
 - Complete botnet in known network

- Other approaches do not evaluate limited network view
- Unrealistic assumptions:
 - All communication relationships captured
 - Complete botnet in known network
- Solution: Simulate loss on communication graph

 Random subset of botnet edges

 Random subset of botnet edges

- Random subset of botnet edges
- Out-of-view connections

- Random subset of botnet edges
- Out-of-view connections
- ISP-related loss (e.g. 1:256 sampling)

Random Botnet Edge
Deletion

Random Botnet Edge
Deletion

$$ext{Precision} = rac{tp}{tp+fp} \ ext{Recall} = rac{tp}{tp+fn}$$

- Random Botnet Edge Deletion
- 90% loss 83% precision

$$ext{Precision} = rac{tp}{tp+fp} \ ext{Recall} = rac{tp}{tp+fn}$$

• Sensor deployment

- Sensor deployment
- Randomly chosen

- Sensor deployment
- Randomly chosen

- Sensor deployment
- Randomly chosen
- No communication between unmonitored hosts

- Sensor deployment
- Randomly chosen
- No communication between unmonitored hosts
- Honeypot scenario

• Sensor deployment

• Sensor deployment

• Structured and unstructured botnets: fast-mixing

- Structured and unstructured botnets: fast-mixing
- High-precision detection
 - 83% precision

- Structured and unstructured botnets: fast-mixing
- High-precision detection
 - 83% precision
 - With 90% missing edges

- Structured and unstructured botnets: fast-mixing
- High-precision detection
 - 83% precision
 - With 90% missing edges
- Simple architecture

- Structured and unstructured botnets: fast-mixing
- High-precision detection
 - 83% precision
 - With 90% missing edges
- Simple architecture
- Only open-source algorithms

Thanks! Questions?

References

[1] http://www.theregister.co.uk/2017/04/27/hajime_iot_botnet/

[2] https://www.zdnet.com/article/satori-botnet-successor-targets-ethereum-mining-rigs/

 $\label{eq:strike-at-any-time} \end{tabular} \end{tabular$

[4] https://www.scmagazine.com/malicious-bot-traffic-climbs-95-percent-in-2017-says-report/article/754164/

[5] https://www.zdnet.com/article/new-mirai-style-botnet-targets-the-financial-sector/

[6] https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/-hide-n-seek-botnet-uses-peer-to-peer-infrastructure-to-compromise-iot-devices

[7] Icon made by Freepik from https://www.flaticon.com/

[8] Icon made by dDara from https://www.flaticon.com/

[9] Icon made by Kiranshastry from https://flaticon.com/

[10] Shishir Nagaraja et al. "BotGrep: finding P2P bots with structured graph analysis". In: USENIX Security Symposium. 2010, p. 7.

[11] Pratik Narang et al. "PeerShark: Detecting peer-to-peer botnets by tracking conversations". In: Proceedings – IEEE Symposium on Security and Privacy. Vol. January 20. 2014, pp. 108–115.

[12] Guofei Gu, Junjie Zhang, and Wenke Lee. "BotSniffer : Detecting Botnet Command and Control Channels in Network Traffic". In: Proceedings of the 15th Annual Network and Distributed System Security Symposium. 53.1 (2008), pp. 1–13.