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Introduction:
Cold-Boot Attacks against Android



 

 

FROST

● FROST: Forensic Recovery of Scrambled Telephones

● Cold-boot based recovery tool for encrypted 
Android smartphones.

● Scenario:

– Criminal leaves phone behind at the scene, or 
the phone gets confiscated.

– The suspect is not able or willing to tell the PIN.

– Phone is switched-on when police accesses it, 
but its user partition is encrypted.

– Although all data on disk are encrypted, RAM 
contents are never encrypted!



 

 

Remanence Effect

● RAM is not lost immediately after power is 
cut but fades away gradually over time.

● Cooling down RAM chips slows down the 
fading process (e.g, on PCs up to 40 sec).

● Question: How to acquire RAM dumps 
from cold-booted Android phones?

 original ~150ms ~500ms ~1sec ~2sec ~4sec ~6sec



 

 

Example:
Samsung Galaxy Nexus

Android phones have open bootloaders 
that enable us to run our own system 
code:

● Bootloaders are locked by default
● Bootloaders can be unlocked with 

physical access via USB
● Unlocking wipes the user partition...
● …but RAM gets not wiped!



 

 

The FROST Attack



 

 

Evaluation:
Bit-Error Rate
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Post-Mortem Memory Analysis



 

 

Android Memory
Contents



 

 

Simple Memory 
Analysis

● Tools like PhotoRec and Strings can recover 
plenty of sensitive data from Android images:

● However, forensically more accurate analyses of 
Android memory structures are needed: 

– Which data belongs to which process / App?

– Can recovery be automated by Volatility plugins?

fully recovered partly recovered

Address book contacts ✓

Calendar entries ✓

Emails and messaging ✓

Thumbnail pictures ✓

Web browsing history ✓

WhatsApp history ✓

WiFi credentials ✓



 

 

Background: Dalvik VM

● Dalvik VM = Java Runtime Environment

● one DVM instance per Android App

● to be replaced by ART in future (Android 4.4)
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Volatility Plugins for 
Linux

● Android is based on the Linux kernel
● each DVM instance is a Linux process
● hence, existing Volatility plugins for 

Linux memory images can be used:
– linux_ifconfig

– linux_route_cache

– …

– linux_pslist

– linux_proc_maps
(acquires memory mappings of individual 

processes, i.e. for DVM instances / Apps)



 

 

Locate DVM Instances

● With existing Linux plugins, we can 
identify memory regions per process:

linux_proc_maps
● Entry point to each DVM instance:

DvmGlobals
● To analyze a specific App, it is essential 

to locate the offset to DvmGlobals in the 
process memory.

● Therefore, we provide a Volatility plugin:
dalvik_find_gdvm_offset



 

 

dalvik_find_gdvm_offset

● Volatility plugin to locate DvmGlobals: 
class dalvik_find_gdvm_offset(linux_common.AbstractLinuxCommand):
 def calculate(self):
   offset = 0x0
   mytask = None

   for task, vma in dalvik.get_data_section_libdvm(self._config):
     if not self._config.PID:
       if task.comm}%""% != %"%zygote%"%:
         continue
     mytask = task
     break

   proc_as = mytask.get_process_address_space()

   gDvm = None
   offset = vma.vm_start
   while offset < vma.vm_end:
     offset }= 1
     gDvm = obj.Object(%'%DvmGlobals%'%, vm = proc_as, offset = offset)
     if dalvik.isDvmGlobals(gDvm):
       yield (offset - vma.vm_start)

class dalvik_find_gdvm_offset(linux_common.AbstractLinuxCommand):
 def calculate(self):
   offset = 0x0
   mytask = None

   for task, vma in dalvik.get_data_section_libdvm(self._config):
     if not self._config.PID:
       if task.comm}%""% != %"%zygote%"%:
         continue
     mytask = task
     break

   proc_as = mytask.get_process_address_space()

   gDvm = None
   offset = vma.vm_start
   while offset < vma.vm_end:
     offset }= 1
     gDvm = obj.Object(%'%DvmGlobals%'%, vm = proc_as, offset = offset)
     if dalvik.isDvmGlobals(gDvm):
       yield (offset - vma.vm_start)



 

 

Generic Volatility 
Plugins

   Altogether, we provide five Volatility plugins 
that can generically be applied to Android Apps:

– dalvik_find_gdvm_offset
find the DVM instance of a process

– dalvik_vms
find all DVM instances in memory

– dalvik_loaded_classes
list all classes of a DVM instance 

– dalvik_class_information
list information of a specific class

– dalvik_find_class_instance
find a specific class instance



 

 

Example Outputs

● find DVM instances:

● find loaded classes:

● ... 

$ ./vol.py [...] dalvik_vms ­o HEX
PID   name            heapStartingSize heapMaximumSize
­­­­­ ­­­­­­­­­­­­­­­ ­­­­­­­­­­­­­­­­ ­­­­­­­­­­­­­­­
 2508 zygote                   5242880       134217728
 2612 system_server            5242880       134217728
 2717 ndroid.systemui          5242880       134217728
 stackSize  tableSize  numDeadEntries  numEntries
 ­­­­­­­­­­ ­­­­­­­­­­ ­­­­­­­­­­­­­­­ ­­­­­­­­­­­­­­­
      16384       4096               0            2507
      16384       8192               0            4123
      16384       8192               0            2787

$ ./vol.py [...] dalvik_vloaded_classes ­o HEX ­p 4614
PID   Offset     Descriptor                       sourceFile
­­­­ ­­­­­­­­­­ ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ ­­­­­­­­­­­­­­­­
4614 0x40c378b8 Ljava/lang/Long;                 Long.java
4614 0x40deb6d0 Ljava/io/Writer;                 Writer.java
4614 0x414e2f60 Lde/homac/Mirrored/ArticlesList; ArticlesList.jav



 

 

Specific Volatility 
Plugins

● The generic plugins are designed to 
support data recovery from any Android 
App.

● Additionally, we provide four examples 
how to use these plugins in forensically 
interesting use cases:

– dalvik_app_calllog

– dalvik_app_lastInput

– dalvik_app_password

– dalvik_app_pictures



 

 

Case A)
Call Log Recovery

● Goal: recover list of incoming/outgoing 
phone calls from confiscated phones

● Target process:
com.android.contacts

● Target class:
PhoneClassDetails.java

One instance of this class is in memory per call 
log entry. Class members:

– type (incoming, outgoing, missed)

– duration, date and time

– telephone number, contact name, photo



 

 

Case B)
Last User Input Recovery

● Goal: retrieve the last given user input 
from a confiscated phone

● Target process:
com.android.inputmethod.latin

● Target class:
RhichInputConnection

● Target field:
 mCommittedTextBeforeComposingText
  (this field is like a keyboard buffer)



 

 

Case C)
User PIN Recovery

● Goal: recover the user PIN (if entered at 
least once before phone is confiscated)

● Target process:
keystore

(Note: this process is an Android system 
process and not running a DVM instance)

● Target location:

– relative address inside keystore
– +/- 200 kBytes at maximum



 

 

Case D)
Photo Metadata Recovery

● Goal: recover metadata like date, time 
and GPS coordinates from photo gallery

● Target process:
com.android.gallery3d

● Target class:
LocalAlbum
└ LocalImage

Class members:

– name, size, date and time

– GPS coordinates (if activated)



 

 

Volatility Plugins
Availability

● GNU General Public License 2.0
● Link: 

https://www1.cs.fau.de/filepool/projects/android_volatility_plugins.zip

volatility/
volatility/plugins/
volatility/plugins/overlays/
volatility/plugins/overlays/linux/
volatility/plugins/overlays/linux/dalvik_vtypes.py
volatility/plugins/linux/
volatility/plugins/linux/dalvik_app_calllog.py
volatility/plugins/linux/dalvik_find_class_instance.py
volatility/plugins/linux/dalvik_app_password.py
volatility/plugins/linux/dalvik.py
volatility/plugins/linux/flags.py
volatility/plugins/linux/dalvik_app_pictures.py
volatility/plugins/linux/dalvik_loaded_classes.py
volatility/plugins/linux/dalvik_class_information.py
volatility/plugins/linux/dalvik_vms.py
volatility/plugins/linux/dalvik_app_lastInput.py



 

 

Anti-Forensics
Thwarting the Cold-Boot Attack



 

 

Anti-Forensics
by Manufacturers

● Smartphone manufacturers could change their 
bootloader policy, such that:

– bootloaders cannot be unlocked (like in 
iPhones and Windows Phones)

– or RAM is wiped (not only disks) when 
bootloaders get unlocked

● However, this only raises the bar for forensic 
memory acquisition. The root problem, i.e., 
sensitive data in RAM, is not solved.



 

 

Anti-Forensics through
Full Memory Encryption

● Obviously, full disk encryption (FDE) does not 
counteract cold-boot attacks on Android RAM.

● In analogy to FDE, main memory must be 
encrypted.

● However, due to performance and hardware 
constraints, only academic solutions exist:

– M. Henson and S. Taylor, “Beyond Full Disk Encryption: 
Protection on Security-Enhanced Commodity 
Processors,” Jun. 2013.

– A. Wurstlein, “Design and Implementation of a Transparent 
Memory Encryption and Transformation System,” Aug. 
2012.



 

 

Anti-Forensics through
Secure Deallocation

● Idea: Erase highly sensitive data from 
RAM on screen lock events (e.g., PINs 
and passwords).

● Problem: Dalvik VM does not enable the 
application level programmer to reliably 
erase data from RAM.

● Future Work: Patch the DVM to allow 
secure deallocation. 

  IMAP
 PW

lock
screen

  erased
unlock
screen

  IMAP
 PW

re-read
password
from
(encryted)
disk



 

 

Conlusions



 

 

Conclusions

● Screen locks (e.g., PINs) and disk 
encryption are insufficient to protect 
sensitive data on smartphones today

● “Smartphone Security Survey” by Ponemon / AVG (2011)

– 89% use their smartphone for email

– 66% keep sensitive business data on it

– 34% use their smartphone for e-payment

● “Smartphones are “perfect targets” for cold boot attacks:

– smartphones contain sensitive data

– smartphones are more often lost than laptops

– smartphones are usually switched on (but locked)



 

 

Thank You!

Questions?
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