

Post-Mortem Memory
Analysis of Cold-Booted

Android Devices

Christian Hilgers Holger Macht
Tilo Müller Michael Spreitzenbarth

FAU Erlangen-Nuremberg
Chair of Computer Science 1

Prof. Felix Freiling

IMF 2014
8th International Conference on

IT Security Incident Management & IT Forensics
May 12th - 14th, 2014

Münster, Germany

Introduction:
Cold-Boot Attacks against Android

FROST

● FROST: Forensic Recovery of Scrambled Telephones

● Cold-boot based recovery tool for encrypted
Android smartphones.

● Scenario:

– Criminal leaves phone behind at the scene, or
the phone gets confiscated.

– The suspect is not able or willing to tell the PIN.

– Phone is switched-on when police accesses it,
but its user partition is encrypted.

– Although all data on disk are encrypted, RAM
contents are never encrypted!

Remanence Effect

● RAM is not lost immediately after power is
cut but fades away gradually over time.

● Cooling down RAM chips slows down the
fading process (e.g, on PCs up to 40 sec).

● Question: How to acquire RAM dumps
from cold-booted Android phones?

 original ~150ms ~500ms ~1sec ~2sec ~4sec ~6sec

Example:
Samsung Galaxy Nexus

Android phones have open bootloaders
that enable us to run our own system
code:

● Bootloaders are locked by default
● Bootloaders can be unlocked with

physical access via USB
● Unlocking wipes the user partition...
● …but RAM gets not wiped!

The FROST Attack

Evaluation:
Bit-Error Rate

 25-30°C
20-25°C
15-20°C
10-15°C
 5-10°C

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

seconds

bit-error
rate

Post-Mortem Memory Analysis

Android Memory
Contents

Simple Memory
Analysis

● Tools like PhotoRec and Strings can recover
plenty of sensitive data from Android images:

● However, forensically more accurate analyses of
Android memory structures are needed:

– Which data belongs to which process / App?

– Can recovery be automated by Volatility plugins?

fully recovered partly recovered

Address book contacts ✓

Calendar entries ✓

Emails and messaging ✓

Thumbnail pictures ✓

Web browsing history ✓

WhatsApp history ✓

WiFi credentials ✓

Background: Dalvik VM

● Dalvik VM = Java Runtime Environment

● one DVM instance per Android App

● to be replaced by ART in future (Android 4.4)

Hardware

Linux Kernel

Linux Process Linux Process Linux Process

Dalvik VM Dalvik VM Dalvik VM

Android App 1 Android App 2 Android App 3

APK
DEX

Resources

APK
DEX

Resources

APK
DEX

Resources

Volatility Plugins for
Linux

● Android is based on the Linux kernel
● each DVM instance is a Linux process
● hence, existing Volatility plugins for

Linux memory images can be used:
– linux_ifconfig

– linux_route_cache

– …

– linux_pslist

– linux_proc_maps
(acquires memory mappings of individual

processes, i.e. for DVM instances / Apps)

Locate DVM Instances

● With existing Linux plugins, we can
identify memory regions per process:

linux_proc_maps
● Entry point to each DVM instance:

DvmGlobals
● To analyze a specific App, it is essential

to locate the offset to DvmGlobals in the
process memory.

● Therefore, we provide a Volatility plugin:
dalvik_find_gdvm_offset

dalvik_find_gdvm_offset

● Volatility plugin to locate DvmGlobals:
class dalvik_find_gdvm_offset(linux_common.AbstractLinuxCommand):
 def calculate(self):
 offset = 0x0
 mytask = None

 for task, vma in dalvik.get_data_section_libdvm(self._config):
 if not self._config.PID:
 if task.comm}%""% != %"%zygote%"%:
 continue
 mytask = task
 break

 proc_as = mytask.get_process_address_space()

 gDvm = None
 offset = vma.vm_start
 while offset < vma.vm_end:
 offset }= 1
 gDvm = obj.Object(%'%DvmGlobals%'%, vm = proc_as, offset = offset)
 if dalvik.isDvmGlobals(gDvm):
 yield (offset - vma.vm_start)

class dalvik_find_gdvm_offset(linux_common.AbstractLinuxCommand):
 def calculate(self):
 offset = 0x0
 mytask = None

 for task, vma in dalvik.get_data_section_libdvm(self._config):
 if not self._config.PID:
 if task.comm}%""% != %"%zygote%"%:
 continue
 mytask = task
 break

 proc_as = mytask.get_process_address_space()

 gDvm = None
 offset = vma.vm_start
 while offset < vma.vm_end:
 offset }= 1
 gDvm = obj.Object(%'%DvmGlobals%'%, vm = proc_as, offset = offset)
 if dalvik.isDvmGlobals(gDvm):
 yield (offset - vma.vm_start)

Generic Volatility
Plugins

 Altogether, we provide five Volatility plugins
that can generically be applied to Android Apps:

– dalvik_find_gdvm_offset
find the DVM instance of a process

– dalvik_vms
find all DVM instances in memory

– dalvik_loaded_classes
list all classes of a DVM instance

– dalvik_class_information
list information of a specific class

– dalvik_find_class_instance
find a specific class instance

Example Outputs

● find DVM instances:

● find loaded classes:

● ...

$./vol.py [...] dalvik_vms ­o HEX
PID name heapStartingSize heapMaximumSize
­­­­­ ­­­­­­­­­­­­­­­ ­­­­­­­­­­­­­­­­ ­­­­­­­­­­­­­­­
 2508 zygote 5242880 134217728
 2612 system_server 5242880 134217728
 2717 ndroid.systemui 5242880 134217728
 stackSize tableSize numDeadEntries numEntries
 ­­­­­­­­­­ ­­­­­­­­­­ ­­­­­­­­­­­­­­­ ­­­­­­­­­­­­­­­
 16384 4096 0 2507
 16384 8192 0 4123
 16384 8192 0 2787

$./vol.py [...] dalvik_vloaded_classes ­o HEX ­p 4614
PID Offset Descriptor sourceFile
­­­­ ­­­­­­­­­­ ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ ­­­­­­­­­­­­­­­­
4614 0x40c378b8 Ljava/lang/Long; Long.java
4614 0x40deb6d0 Ljava/io/Writer; Writer.java
4614 0x414e2f60 Lde/homac/Mirrored/ArticlesList; ArticlesList.jav

Specific Volatility
Plugins

● The generic plugins are designed to
support data recovery from any Android
App.

● Additionally, we provide four examples
how to use these plugins in forensically
interesting use cases:

– dalvik_app_calllog

– dalvik_app_lastInput

– dalvik_app_password

– dalvik_app_pictures

Case A)
Call Log Recovery

● Goal: recover list of incoming/outgoing
phone calls from confiscated phones

● Target process:
com.android.contacts

● Target class:
PhoneClassDetails.java

One instance of this class is in memory per call
log entry. Class members:

– type (incoming, outgoing, missed)

– duration, date and time

– telephone number, contact name, photo

Case B)
Last User Input Recovery

● Goal: retrieve the last given user input
from a confiscated phone

● Target process:
com.android.inputmethod.latin

● Target class:
RhichInputConnection

● Target field:
 mCommittedTextBeforeComposingText
 (this field is like a keyboard buffer)

Case C)
User PIN Recovery

● Goal: recover the user PIN (if entered at
least once before phone is confiscated)

● Target process:
keystore

(Note: this process is an Android system
process and not running a DVM instance)

● Target location:

– relative address inside keystore
– +/- 200 kBytes at maximum

Case D)
Photo Metadata Recovery

● Goal: recover metadata like date, time
and GPS coordinates from photo gallery

● Target process:
com.android.gallery3d

● Target class:
LocalAlbum
└ LocalImage

Class members:

– name, size, date and time

– GPS coordinates (if activated)

Volatility Plugins
Availability

● GNU General Public License 2.0
● Link:

https://www1.cs.fau.de/filepool/projects/android_volatility_plugins.zip

volatility/
volatility/plugins/
volatility/plugins/overlays/
volatility/plugins/overlays/linux/
volatility/plugins/overlays/linux/dalvik_vtypes.py
volatility/plugins/linux/
volatility/plugins/linux/dalvik_app_calllog.py
volatility/plugins/linux/dalvik_find_class_instance.py
volatility/plugins/linux/dalvik_app_password.py
volatility/plugins/linux/dalvik.py
volatility/plugins/linux/flags.py
volatility/plugins/linux/dalvik_app_pictures.py
volatility/plugins/linux/dalvik_loaded_classes.py
volatility/plugins/linux/dalvik_class_information.py
volatility/plugins/linux/dalvik_vms.py
volatility/plugins/linux/dalvik_app_lastInput.py

Anti-Forensics
Thwarting the Cold-Boot Attack

Anti-Forensics
by Manufacturers

● Smartphone manufacturers could change their
bootloader policy, such that:

– bootloaders cannot be unlocked (like in
iPhones and Windows Phones)

– or RAM is wiped (not only disks) when
bootloaders get unlocked

● However, this only raises the bar for forensic
memory acquisition. The root problem, i.e.,
sensitive data in RAM, is not solved.

Anti-Forensics through
Full Memory Encryption

● Obviously, full disk encryption (FDE) does not
counteract cold-boot attacks on Android RAM.

● In analogy to FDE, main memory must be
encrypted.

● However, due to performance and hardware
constraints, only academic solutions exist:

– M. Henson and S. Taylor, “Beyond Full Disk Encryption:
Protection on Security-Enhanced Commodity
Processors,” Jun. 2013.

– A. Wurstlein, “Design and Implementation of a Transparent
Memory Encryption and Transformation System,” Aug.
2012.

Anti-Forensics through
Secure Deallocation

● Idea: Erase highly sensitive data from
RAM on screen lock events (e.g., PINs
and passwords).

● Problem: Dalvik VM does not enable the
application level programmer to reliably
erase data from RAM.

● Future Work: Patch the DVM to allow
secure deallocation.

 IMAP
 PW

lock
screen

 erased
unlock
screen

 IMAP
 PW

re-read
password
from
(encryted)
disk

Conlusions

Conclusions

● Screen locks (e.g., PINs) and disk
encryption are insufficient to protect
sensitive data on smartphones today

● “Smartphone Security Survey” by Ponemon / AVG (2011)

– 89% use their smartphone for email

– 66% keep sensitive business data on it

– 34% use their smartphone for e-payment

● “Smartphones are “perfect targets” for cold boot attacks:

– smartphones contain sensitive data

– smartphones are more often lost than laptops

– smartphones are usually switched on (but locked)

Thank You!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

