Dynamic Correlation of Digital Forensics Reports

Christoph Beckmeyer Aachen University of Applied Sciences <u>christoph.beckmeyer@alumni.fh-aachen.de</u>

IMF 2014

8th International Conference on It Security Incident Management and IT Forensics

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Dynamic Correlation of Digital Forensics Reports - Christoph Beckmeyer | 1

Problem description

Proposed solution

Demo

Limitations & Future Work

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Project started 2012

by Martin Pfeiffer as his Bachelor thesis.

Vision of a Research Tool.

Prototypical Database Design for Correlation.

Importer for Physical Analyzer 2.

Correlation in Digital Forensics

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Forensik FH Aachen

Ist Level Correlation:

Joining of sets of artifacts with same semantic from different sources.

2nd Level Correlation:

Establishing semantic relationships between individual artifacts.

Artifacts

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Use cases for correlation:

Case evidence spread across devices.

Extraction tools have different capabilities.

Organizations use different tools.

Correlation as a Problem

Many existing file formats

New file formats emerge

Existing formats change (CDR)

Across formats: different syntax for same semantics

Excel

Often manual labor.

Custom Development

Longer development cycle.

Commercial Analysis Tools

Expensive.

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Current Solutions to Correlation

Reviewed tools:

Tools	User Definable 1st Level Correla- tion	2nd Level Correla- tion	Runtime Extensi- bility	Cross Device Ana- lysis
XIRAF (Alink et al.)	Yes, wrapped with XML			Yes
FACE (Case et al.)		Yes, predefined	Yes (Com- mon Lisp)	
Zeitline (Buchholz)			35.5	Yes
EIC (Osborne et al.)		Yes		Yes
ECF (Chen et al.)		Yes		Yes
Rich Event Represen- tation (Schatz et al.)		Yes		Yes
Excel	Yes		Yes (VBScript)	Yes
Analysts Notebook	Yes	Yes	,	Yes
Physical Analyzer	No	No	Yes (but failed to use)	

Previous Lessons from DIRECT:

Embedding into existing tool failed.

Modeling domain into RDBMS was inflexible.

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

AACHEN IVERSITY OF APPLIED SCIENCES

Conclusions from current solutions:

Practitioners are in need for flexible tool to:

Quickly correlate by themselves. (Cut development cycle)

Current tools often correlate into static model.

Hinders fast adaptation to change in inputs.

Flexible correlation is possible with commercial tools.

But they might not support your use case. (e.g., comparison of inputs)

Introduction of Abstractions

- I. Normalizing the file format.
- 2. Correlation using Drag'n Drop.
- 3. Normalization by attaching functions.

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Introducing Abstractions

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

1. Normalizing the File Format

```
<model type="Call" id="82a...."</pre>
             deleted state="Intact">
         <field name="Name" type="String">
           <empty />
         </field>
         <field name="Type"</pre>
                    type="CallType">
           <value type="CallType"><![CDATA[Outgoing]]></value>
         </field>
         <field name="TimeStamp" type="TimeStamp">
           <value type="TimeStamp">2005-09-13T09:11:34+02:00</value>
         </field>
                                                                    PA2
</model>
   <view name="Anrufe">
 <item>
       <field name="Art"</pre>
              value="Entgegengenommen"
              class="STATUS"/>
       <field name="Zeit"
               value="13.10.2013 11:37:30 (Gerät)"
               class="TIMF"/>
     </item>
© FH AACHEN UNIVERSITY OF APPLIED SCIENCES
```

Wednesday, May 14, 14

Dynamic Correlation of Digital Forensics Reports - Christoph Beckmeyer 115

2. Correlation using Drag'n Drop

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

2. Correlation using Drag'n Drop

Modeling the domain

Fusion of XRY and Physical Analyzer

Model conversations

H AACHEN NIVERSITY OF APPLIED SCIENCES

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

3. Value Normalization

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Examples:

Date formats

Phone numbers

Matching against known files

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Dynamic Correlation of Digital Forensics Reports - Christoph Beckmeyer |19

Direct Workbench - TestCase4	
Case Import Tools	

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Better Graphical User Interface.

More functions.

Tracing to the original file.

Queries on the correlation result.

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Automatic Matching

On artifact / attribute names

On attributes values

2nd Level Correlation

Semantic Network

Deduction of relations

H AACHEN NIVERSITY OF APPLIED SCIENCES Dynamic Correlation with DIRECT

- I. Normalizing the file format.
- 2. Drag'n Drop correlation for artifacts & attributes.
- 3. Function library for value normalization.

Christoph Beckmeyer chrisb@alumni.fh-aachen.de www.it-forensik.fh-aachen.de/projekte/ direct

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Dynamic Correlation of Digital Forensics Reports - Christoph Beckmeyer |23