

ITU-T X.805 Workshop IMF 2007 Stuttgart, Germany September 13, 2007

Suhasini Sabnis

Bell Labs - Security Technology Application Research

Agenda

Security Drivers and Challenges ITU-T X.805 Security Framework Overview Using ITU-T X.805 for Security Assessment Applying ITU-T X.805 – A Case Study Security Standards and Security Compliance Questions

A best-in-class company must cover people, process & tools

administration

All Rights Reserved © Alcatel-Lucent 2006, 2007

Security as an Opportunity

Cost Reduction

- Optimize operations and productivity
- Compliancy costs
- Lessons learned

Revenue Increase

 More competitive offering through ISO certification

Customer Satisfaction

- More reliable and protected service delivery
- Increased brand image

Security as a Risk

Business Risk

- Loss of Revenue
- Customer Churn

Regulatory

- SOX Compliancy
- EU privacy regulation
- Protection of Critical Infrastructures
- Financial segment: BASEL II

Customer Satisfaction

Intrusion incidents → Higher perceived vulnerability

Reduced brand image

Security is a Process not a Product

- Strong Information Security Organization
- Unambiguous & up-to-date security policies & awareness
- Identification of critical assets & risk inventory
- Adaptable information security architecture
- Testable business continuity program
- Considers security in the design and planning stage

Security is a continuous living process to ensure people, network, & information have the necessary protection the businesses require for secure, reliable day-to-day operations

- 1. What kind of protection is needed & against what threats?
- 2. What are the distinct types of network equipment & facility groupings that need to be protected?
- 3. What are the distinct types of network activities that need to be protected?

The framework provides the system-level thinking essential for the nextgeneration approach to security

- Organizes amazing complexity into bite-sized requirements
- Comprehensiveness assures all aspects considered
- Common approach leads to shared understanding
- Standardization essential to interoperability in multi-supplier networks

X.805 provides a framework for how complex networks can be examined in a systematic manner for security considerations

Global Standard ITU-T X.805, ISO/IEC 18028-2:

A Comprehensive Network Security Framework*

* Defined by ITU-T X.800 (1991) *"Security Architecture for Open Systems Interconnection for CCITT Applications"*

X.800 Threat Model

1. Destruction:

Destruction of information &/or other network resources

Example: (1) Malicious destruction of network equipment

2. Corruption:

An unauthorized tampering with an asset

Examples: (1) Changing network configuration information

(2) Changing data as it is being transmitted across the network

3. Removal:

Theft, removal or loss of information &/or other resources

Examples: (1) Theft of a laptop or a confidential information

4. Disclosure:

An unauthorized access to an asset

Examples: (1) Unauthorized data capture (data sniffing)

(2) Discovery of unprotected WLAN access points

-5. Interruption:

Network becomes unavailable or unusable

Examples: (1) Cutting of a communication facility

(2) Network denial of service attack

Each Security Layer has unique vulnerabilities, threats Infrastructure security enables services security enables applications security

Each Security Layer has unique vulnerabilities, threats Infrastructure security enables services security enables applications security

Each Security Layer has unique vulnerabilities, threats Infrastructure security enables services security enables applications security

Security Planes represent the types of activities that occur on a network Each Security Plane is applied to every Security Layer to yield 9 security Perspectives (3 x 3) Each security perspective has unique vulnerabilities & threats

Security Planes represent the types of activities that occur on a network Each Security Plane is applied to every Security Layer to yield 9 security Perspectives (3 x 3) Each security perspective has unique vulnerabilities & threats

Security Planes represent the types of activities that occur on a network Each Security Plane is applied to every Security Layer to yield 9 security Perspectives (3 x 3) Each security perspective has unique vulnerabilities & threats

End User Security Pla <u>Activities</u> •End-user data transfe •End-user - application interactions	er • HTTP, RTP, POP, IMAP • TCP, UDP, FTP • IPsec, TLS
<u>Control/Signaling Security Plan</u> <u>Activities</u> •Update of routing/switching tables •Service initiation, control, and teardown •Application control	ne <u>Protocols</u> • BGP, OSPF, IS-IS, RIP • SIP, RSVP, H.323, SS7. • IKE, ICMP • PKI, DNS, DHCP, SMTP
<u>Activities</u> <u>Activities</u> Operations Administration Management Provisioning	Protocols •SNMP •Telnet •FTP •HTTP

Assets are identified based on the network architecture or design and the scope of work that needs to be secured; e.g., what services, applications, etc. need to be secured. It is an iterative process.

First step is to examine the X.805 Layers:

Infrastructure Layer: The underlying hardware, software platforms, data, transmission facilities, etc. used by the service or application. Assets include operating systems that are running as well as stored on disk, DBMS, etc.

Services Layer: The logical groupings of equipment, facilities, information that comprise services required by the application. For example, in IPTV, IP multicast is a service used by the Video-on-Demand application. Assets include multicast sources, rendezvous points, group members, etc.

Applications Layer: Systems comprising the in-scope applications, the information they generate and use, and information flows. Typically, the end-user directly interacts with these systems. In IPTV, example application is Video-on-Demand. Assets include video servers, MPEG content, video streams, etc.

Second step is to use the X.805 Planes to uncover additional assets by examining the activities that must be protected at the management, control and end-user plane for each asset listed in the First step :

For example in an IPTV study, as part of examining IP multicast service <u>control plane</u>, PIM and MSDP protocols are assets that need protecting. Likewise, IGMP protocol is another asset as part of examining the IP multicast service <u>management plane</u>. Examining the video stream <u>control plane</u>, identified DSM-CC and RTSP protocols as assets that need protecting.

Applying X.805 - Asset Identification

Example 1: Internet Service Provider

		Layer	
	Infrastructure	Services	Applications
	Router	<u>VPN</u>	<u>Email</u>
	RAS	<u>QoS</u>	Web Hosting
	Web Servers	<u>VoIP</u>	
	Management GUI	User Provisioning	
Management	Command Line Interface	SLA Configuration	Provisioning user mailboxes
	Remote Management	Billing/Mediation	
	Douting Tables	IPSec/PKI	SMTP
Control		RSVP	POP3
	DNS Database	SIP	НТТР
End-User	Access Space Data		HTTP Traffic
	Email Data	VoIP Traffic	User Credentials

		Layer	
	Infrastructure	Services	Applications
	Router	<u>VPN</u>	Order Processing
	<u>PBX</u>	<u>VoIP</u>	<u>NetMeeting</u>
	Enterprise Servers	Directory Services	SIP Client
Management	Management GUI Command Line Interface Remote Management	Provisioning Users Managing LDAP	Managing Upgrades (Central Distribution) Configuration of SIP clients
Control	Routing Tables DNS Database	IPSec/PKI SIP LDAP	LDAP SIP
End-User	Enterprise Hosted Data Backup of End-user PCs Voice Messages	VoIP Traffic End-User information	NetMeeting Session User Credentials

Plane

Authentication: Proving a person's identity (e.g., userID, password) does not fit into confidentiality, integrity, availability. Non-repudiation: Being able to unequivocally associate an entity with an action. Identifying the authorized person that performed an unauthorized action on protected data has nothing to do with the data's confidentiality, integrity, availability. Access control: Placing a lock on a door to prevent someone from entering a hazardous location has nothing to do with confidentiality, integrity or availability. **Privacy**: Privacy recognizes the need to protect actions in addition to information. Protecting information is addressed by confidentiality. Protecting the conversation in a phone call between Pat Russo and John

Chambers protects their confidentiality. Protecting the fact that Pat Russo and John Chambers had a phone call protects their privacy. **Communications Security**: Protecting against call black-holing has nothing to do with confidentiality, integrity, availability.

Applying Security Dimensions - An Example

- Ensure that only authorized personnel can perform administrative/management activities on the network device or communications link
- Ensure that only authorized devices (e.g. in the case of SNMP managed devices) are allowed access
- Address both direct & remote management of device

Applying Security Dimensions - An Example

Applying Security Dimensions - An Example

VoCable Network Security - Example Application of ITU-T X.805

34 | X.805 Training | April 2007

Alcatel-Lucent

Security Life Cycle Objectives -

How ITU-T X.805 assets be leveraged

- Vulnerability audits: Interviews, tests, protocol analyses
- Software robustness
- Security tools setup

Product hardening

Technology deployment

Security engineering guidelines for the customer

Alcatel-Lucent 🕖

Bui Continue ring in the builden of the second of the seco

Govt. Internet Research Lab

High Level Key Definitions

Threats (Threat Scenarios)

- An unwanted (deliberate or accidental) event that may result in harm to a business, institution or individual.
- Any circumstance or event with the potential to adversely impact a business, institution or individual.
- An indication or source of impending danger, declaration of intent to harm a business, institution or individual.
- Adversarial attack or inadvertent error that causes damage to a business, institution or individual.

X.800 Threat Classes (Corruption, Destruction, Theft/Removal, Disclosure, Interruption)

Threat classes are applicable to individual assets. For example, a customer billing record is subject to corruption, destruction, theft/removal, disclosure, interruption

Relationship of Threat Classes and Threat Scenarios

- The threat classes contained in the threat model are fixed regardless of what technology and industry vertical the threat model is applied to.
- A Threat Scenario is realized by a combination of threat classes (threats) on a set of assets. For example, Invasion of Subscriber Privacy can be realized by:
 - Disclosure on the air interface asset,
 - Disclosure of the call detail record asset,
 - Disclosure of the customer billing record asset,
- Example of the application of a threat class (threat) to an asset:
 - Threat Scenario: Invasion of Subscriber Privacy
 - Asset: Radio Air Interface
 - Disclosure Threat Class: Sniffing devices can be used to eavesdrop on subscriber conversations.
 - Vulnerability: EV-DO air interface is not encrypted.
 - Countermeasure: Employ encryption at a higher protocol layer (e.g., TLS/SSL, IPsec).

Countermeasures and Recommendations

1		Asset	Services Layer Threat Details	Countermeasures
	1.1	IGMPv2/v3		
Known Countermeasures+		Corruption	Malformed IGMP packets	To protect against malformed IGMP packets: 1. Verify DSLAM or STB device manufacturer follows best practices for secure software development. 2. Include security testing during DSLAM or STB acceptance testing.

ATTACKS

Security Dimensions

Alcatel Lucent

WLAN Network Security Domains

Alcatel · Lucent

X.805 Asset Identification -

Sample Asset Inventory

	Infrastructure Layer	Services Layer	Applications
	Access Point (AP)	Wireless Access	Layer
Management Plane	AP GUI AP management traffic	Provisioning a user (e.g., MAC address in AP)	
Control/Signaling Plane	Association table in AP	Authentication traffic 802.11a/b/g DHCP traffic	
User Plane		User traffic between MS and AP	

WLAN Reference Architecture

Sample Threats

X.805 Threat Analysis

Asset	Destruction	Corruption	Removal	Disclosure	Interruption	Threat
GUI of all NEs	N/A	N/A	N/A	Unauthorized access	Consuming processing resources (DoS)	1
AP Management Traffic	N/A	Forged management commands	Redirecting messages to another address	Eavesdropping (SNMP v1 and v2)	Consuming processing resources (DoS)	1
Association table in AP	Unauthorized access to AP, software backdoors, buffer overruns	N/A	N/A	Gathering information about clients (depending on what is stored)	N/A	1
User traffic between MS and AP	N/A	Session hijacking Man in the middle attack	Evil twin	No encryption Key cracking	RF jamming Data flooding	2
Authentication handshake	N/A	N/A	N/A	Shared, static key common across all clients key stored in clear text	Data flooding	2
802.11a/b/g	N/A	Session hijacking Man in the middle attack	Evil twin	No encryption	RF jamming Data flooding	2

Threats:			
1. Compromise of administrative and management data			
2. Compromise of wireless coverage			

		ISO 18028-2 Threat Exposure				
Asset	Destruction	Corruption	Removal or Theft	Disclosure	Interruption	Covered in Threat
1. AP GUI				Х	Х	1
2. AP Management Traffic		Х	Х	Х	Х	1
3. Association Table in AP	Х			Х		1
4. User traffic between MS and AP		Х	Х	Х	х	2
5. Authentication Traffic				Х	Х	2
6. 802.11a/b/g		Х	Х	Х	Х	2

Threats:

- 1. Compromise of administrative and management data
- 2. Compromise of wireless coverage

-Sample illustration

	Asset/Threat	Analysis
1.	AP GUI	
	Disclosure	Use of HTTP for web-based access
	Interruption	Physical access of AP or password compromise
2.	AP Management Traffic	
	Corruption	Forged management commands (protocol weakness)
	Removal	Spoofed ARP Response (low probability vulnerability)
	Disclosure	Eavesdropping (SNMP v1, v2)
	Interruption	DoS attack on the management port of the AP
3.	Association Table in AP	
	Destruction	Weak access control, lack of software integrity
	Disclosure	

Countermeasures and Recommendations

-Sample illustration

Asset/Threat	Analysis	Countermeasures
1. <u>AP GUI</u> Disclosure	Use of HTTP for web-based access	- Use secure HTTP (HTTPS). Password protection best practices. If AP does not support https, then use secure VPN using an additional VPN gateway.
Interruption	Physical access of AP or password compromise	- Physical access to the AP should be limited and protected by using site surveillance
2. AP Management Traffic Corruption Removal Disclosure Interruption	Forged management commands (protocol weakness) Spoofed ARP Response (low probability vulnerability) Eavesdropping (SNMP v1, v2) DoS attack on the management port of the AP	 -Since the AP is primarily a bridge device, the management port for the AP can be on a separate subnet (assign it a different network from the users) Use ACLs to control access. - Encryption of the community string while in-transit forces the attacker to know the encryption key in addition to successfully guessing the password in order to gain access. SNMPv3 should be configured with community string encryption enabled.
3. Association Table in AP Destruction Disclosure	Weak access control, lack of software integrity	-Change default AP configuration, such as SSID -Disable SSID broadcasts -Software integrity checks

Key Distribution (for end-users and network elements) and Public Key Infrastructure

"Network Privacy" - topology hiding and NAT/Firewall traversal for real-time applications

Convergence with IT security

Management of security functions (e.g. policy)

Guidelines on the implementation of the IETF protocols (e.g. IPSec options)

Security for supporting access: DSL, WLAN, and cable access scenarios

Guidelines for handling 3GPP vs. 3GPP2 differences in IMS security

Both – network assets and network traffic – must be protected. Proper management procedures will prevent attacks from within

The ISO 17799/ISO 27002 standard prepares organizations for industry specific regulations and standards:

- Financial: BASEL II; GLBA
- Health Care: eHealth; HIPAA
- Government: CSE;

A common framework to adapt to emerging industry requirements

HIPAA – Health Insurance Portability and Accountability Act

GLBA – Gramm-Leach Bliley Act

CSE - Communications Security Establishment

Standards approach provides foundation

ISMS = Information Security Management Systems

ISO/IEC 27001 enhanced by ITU-T X.805 / ISO 18028-2

ISO/IEC 27001:2005 Controls

eHealth or Health Insurance Portability and Accountability Act (HIPAA)

Privacy & Cyber Security Requirements

What:

 Security of individually identifiable health information in electronic form referred to as Electronic Protected Health Information (ePHI)

Who:

 Healthcare providers, health care clearinghouses, health plan providers who transmit any protected health information in electronic form

How:

 By maintaining reasonable and appropriate administrative, physical, and technical safeguards to protect against any threats to the security and integrity of ePHI

Why:

 To protect confidentiality, integrity and availability of ePHI when it is stored, maintained or transmitted.

Utilizing ITU-T X.805 for Security Safeguards in Health Sector

Example: Sarbanes-Oxley Section 404 Management Assessment of Internal Controls

- Management must establish effective internal controls for accurate & complete reporting
- Annual assessment by management of the effectiveness of internal controls supported by documented evidence
- Validation of management's assessment by a registered public accounting firm

Systems, data & infrastructure components are critical to the financial reporting process.

Enablers for Reliable Financial Reporting

- Information management & data classification
- Information security (access control, authentication, identity management, cryptography, etc.)
- Real-time reporting & audit logs
- Data processing integrity & validation

Network Security Requirements

Need comprehensive end-to-end network security analysis

Using ITU -T X.805/ISO 18028-2 as your overall network security model will

- Drive common security policies & requirements for your customer service offerings
- Build in quantification of security threats and associated risk
- Ensure security is built in from service concept through deployment.
- Continue to drive the end-to-end network security

Using ITU-T X.805 for Measuring Security

Business Imperatives	Security Drivers	End-User Needs
Minimize Downtime & Enhance Productivity	Maintain peak efficiency and effectiveness by protecting your staff and data from threats quickly recognizing and mitigating security incidents more efficiently managing your network and security	"Conduct business anytime"
Provide trustworthy service	Provide highly-available, quality services by controlling the impact of attacks on customer data maintaining regulatory compliance to enable operation alleviating privacy concerns	"Protected personal information"
Operate cost- effectively	Control risks while managing costs by relying on proven, best-in-class solutions leveraging external capabilities and staff avoiding losses, liability, and fines	"Secure services now at a competitive price"
Build for the future	Create a business that can evolve securely by encouraging customer loyalty via a secure reputation ensuring on-going reliability and availability allowing for smooth migration to new technologies	"Seamless, fast evolution to hot new features"

Backup

- One Answer to Architecture
- Implementation Specification
- A set of Organizational Controls
- A Procedure or Specification of Evaluation Criteria
- Implementation of Risk Management
- A Protocol Verification Algorithm
- Operations Management Guide
- Organizational or Personnel Management Guide
- Physical Security Standard
- Product or Technology or Industry Dependent

X.805 can be used as an enabler for any of the items and more

May be just a talking point slide

