
1/17

Testing Forensic Hash Tools
on Sparse Files

IMF 2007, Stuttgart, September 2007

Harish Daiya
IIT Kharagpur, India

Maximillian Dornseif
Hudora GmbH, Germany

Felix C. Freiling
University of Mannheim, Germany

2/17

Digital Evidence vs. Physical Evidence

• Digital evidence is evidence which is based on
data stored or transmitted using a computer system
[Casey, p. 12]

• The primary manifestation of digital evidence is
physical evidence

– Magnetisation on surface of hard disk

– Electronic signals on data or bus cable

– State of transistors of main memory

• Digital evidence must be extracted and translated
into something readable before it can be used

3/17

Digital Evidence and Abstraction

• Tools are needed to extract digital evidence from
physical evidence

• Tools only present an abstraction of physical
evidence

• Several levels of abstraction are standard in
modern systems

• Each level introduces a new interpretation of
data

4/17

Analysis on Different Layers: Hard Disks

• Digital investigations can be performed at different
levels of abstraction

• Main levels for hard disks [Carrier, p. 10ff]:

– Physical storage medium level (raw hard disk
sectors)

– Volume level (collection of sectors accessible to an
application)

– File system level (collection of data structures
allowing an application to read and write files)

• Often, the same tools are used on these different
levels

5/17

Example: Forensic Hash Tools

• Input: stream of bits

• Output: cryptographic hash

– Hash value is an unforgeable “fingerprint” of the original bit
stream

– Used to protect integrity of evidence

• Since input is just a stream of bits, forensic hash tools can be
used on all three analysis layers for hard disks

– Physical

– Volume

– File System

6/17

Problems

• Tools may give different results when applied to the same
evidence at different levels of abstraction

• Example: Two segments of a hard disk containing two files A
and B

– Hash tool at file system level says: A and B are identical

– Hash tool at volume level says: A and B are not identical

• Unconscious investigators may come to different conclusions

7/17

Outline

• Motivation

• Problems of Abstraction and Interpretation with
Digital Evidence

• Example: Hash tools applied to sparse files

• Discussion

8/17

...

#define beg_str "beg_string"

#define end_str "end_string"

#define withhole "withhole"

#define withzero "withzero"

#define n 100000 /* size of hole */

int main() {

int offset=n, fd1, fd2, i;

char *buff1 = beg_str;

char buff2[offset];

char *buff3 = end_str;

fd1=creat(withhole, 0);

fd2=creat(withzero, 0);

/* create common header */

write(fd1,buff1,10);

write(fd2,buff1,10);

for(i=0;i<offset;i++)

buff2[i]=0;

lseek(fd1,offset,SEEK_CUR);

write(fd2,buff2,offset);

/* create common trailer */

write(fd1,buff3,10);

write(fd2,buff3,10);

return(0);

}

Sparse Files

... hole ...

... 0000 ...

9/17

Handling of Sparse Files

• Depends on the file system

• At file system level

– Metadata (e.g. block pointers) indicates that file is
sparse

– read() returns sequence of zeros

• Files are different at the volume level

• Files are the same at the file system level

10/17

File Systems and Sparse Files

• File systems that support sparse files:

– Ext2/ext3

– Reiserfs

– JFS

– NTFS

– ...

• File systems that do not support sparse files:

– FAT

– Minix

– ...

11/17

Can Sparse Files be Detected?

• Unix command du (disk usage)

– du file

Outputs number of kilobytes which file consumes

at the volume level

– du --apparent-size file

Outputs number of kilobytes which file “seems” to

consume

• Usually smaller due to internal fragmentation

• May be larger due to sparse files, indirect blocks, etc.

12/17

Experiment

• We created simple file system images for different types of
file systems

• In each image we created two files (a sparse file and a non-
sparse file)

• We ran several different hash tools on both files and
compared the output

• We invoked du and du --apparent-size on both files

• Example on how to create and mount images in Linux (here
ext3 file system mounted as loopback device):

dd if=/dev/zero of=image bs=1M count=10

mkfs.ext3 image

mount -o loop image /mnt

13/17

Results (1/2)

• Files have different sizes on volume level for
most file systems

14/17

Results (2/2)

• Hashes of sparse and non-sparse file were the
same for all tools

– Hash tools invoked on file system level

15/17

Summary

• Hash tools can give identical hashes to files with
different physical representations

– Hash tools at file system level ignore “sparseness”

• du detects file systems which support sparse files

– FAT and Minix do not support sparse files

• When invoked at file system level, tools should warn
the user about these possible inconsistencies

• Apart from challenging the integrity of the witness,
is this a problem ... ?

16/17

Attack Scenarios

• Scenario 1: Insider wants to steal information
– Insider prepares a large sparse file with the information
– Insider copies the file to a small removable device
– Insider replaces file with non-sparse file
– Insider claims: “I didn’t steal the file - it doesn’t fit on my USB

stick”

• Scenario 2: Insider wants to perform denial-of-service
– Insider prepares a huge non-sparse file which consumes a lot of

disk space
– Disk space is exhausted, causing service disruption
– Later insider replaces file with sparse version
– Insider claims: “It’s not my fault, I created a sparse file”

• In both cases, if only hashes at file system level are stored,
attacker can tamper with evidence

17/17

References

• Brian Carrier: File System Forensic Analysis.
Addison-Wesley, 2005.

• Eoghan Casey: Digital Evidence and Computer
Crime: Forensic Science, Computers, and the
Internet. Academic Press, 2. Ed., 2004.

• Harish Daiya: Sparse file testing images. Available
online at http://pi1.informatik.uni-mannheim.de/
filepool/projects/hash-tool-testing/images.zip

