Testing Forensic Hash Tools
on Sparse Files

IMF 2007, Stuttgart, September 2007

Harish Daiya
IIT Kharagpur, India

Maximillian Dornseif
Hudora GmbH, Germany

Felix C. Freiling
University of Mannheim, Germany

1/17

Digital Evidence vs. Physical Evidence

e Digital evidence is evidence which is based on
data stored or transmitted using a computer system
[Casey, p. 12]

e The primary manifestation of digital evidence is
physical evidence
— Magnetisation on surface of hard disk
— Electronic signals on data or bus cable
— State of transistors of main memory

e Digital evidence must be extracted and translated
into something readable before it can be used

2/17

Digital Evidence and Abstraction

Tools are needed to extract digital evidence from
physical evidence

Tools only present an abstraction of physical
evidence

Several levels of abstraction are standard in
modern systems

Each level introduces a new interpretation of
data

3/17

Analysis on Different Layers: Hard Disks

e Digital investigations can be performed at different
levels of abstraction
e Main levels for hard disks [Carrier, p. 10ff]:

— Physical storage medium level (raw hard disk
sectors)

— Volume level (collection of sectors accessible to an
application)

— File system level (collection of data structures
allowing an application to read and write files)

e Often, the same tools are used on these different
levels

4/17

Example: Forensic Hash Tools

e Input: stream of bits
e Qutput: cryptographic hash

— Hash value is an unforgeable “fingerprint” of the original bit
stream

— Used to protect integrity of evidence

e Since input is just a stream of bits, forensic hash tools can be
used on all three analysis layers for hard disks

— Physical
— Volume
— File System

5/17

Problems

Tools may give different results when applied to the same
evidence at different levels of abstraction

Example: Two segments of a hard disk containing two files A
and B

— Hash tool at file system level says: A and B are identical
— Hash tool at volume level says: A and B are not identical

Unconscious investigators may come to different conclusions

6/17

Outline

Motivation

Problems of Abstraction and Interpretation with
Digital Evidence

Example: Hash tools applied to sparse files
Discussion

717

#define beg_str "beg_string"
#define end_str "end_string"
#define withhole "withhole"
#define withzero "withzero"
#define n 100000

int main () {

int offset=n,
char *buffl =

fdl, f£d2, 1i;
beg_str;

Sparse Files

/* size of hole */

char buff2[offset];
char *buff3 = end_str;

/- o hOIe o
fdl=creat (withhole, 0);

fd2=creat (withzero, 0);

/* create common header */
write (fdl,buffl,10);
write (fd2,buffl,10);

for (1i=0;i<offset; i++)
buff2[i]=0;

lseek (fdl, offset, SEEK_CUR) ;
write (£fd2,buff2,o0ffset); ----77°

/* create common trailer */
write (£dl,buff3,10);

write (£d2,buff3,10);
return (0) ;

- ... 0000 ...

8/17

Handling of Sparse Files

Depends on the file system

At file system level

— Metadata (e.g. block pointers) indicates that file is
sparse

— read () returns sequence of zeros

Files are different at the volume level
Files are the same at the file system level

9/17

File Systems and Sparse Files

e File systems that support sparse files:
— Ext2/ext3
— Reiserfs
— JFS
— NTFS

o File systems that do not support sparse files:
— FAT
— Minix

10/17

Can Sparse Files be Detected?

e Unix command du (disk usage)

—du f1ile
Outputs number of kilobytes which £ile consumes
at the volume level

— du ——apparent-size file
Outputs number of kilobytes which £ile “seems” to
consume

e Usually smaller due to internal fragmentation
e May be larger due to sparse files, indirect blocks, etc.

1117

Experiment

We created simple file system images for different types of
file systems

In each image we created two files (a sparse file and a non-
sparse file)

We ran several different hash tools on both files and
compared the output

We invoked du and du --apparent-size on both files

Examr:le on how to create and mount images in Linux (here
ext3 file system mounted as loopback device):

dd if=/dev/zero of=image bs=1M count=10

mkfs.ext3 image
mount —-o loop image /mnt

12/17

¢ Files have different sizes on volume level for

Results (1/2)

most file systems

filesystem | img size du du —app size
withhole withzero withhole withzero

ext3 l6MB JKB 99KB 98KB 98KB
reiserfs T76MB S§KB 100KB 98KB 98KB
viat [IMB 98KB 98KB 98KB 98KB
s [7MB SKB 100KB 98KB 98KB
minix 5.1MB 99KB 99KB 98KB 98KB
ext2 [IMB 3JKB 100KB 98KB 98KB
msdos 5.1MB 98KB 98KB 98KB 98KB

13/17

Results (2/2)

o Hashes of sparse and non-sparse file were the
same for all tools

— Hash tools invoked on file system level

hashtool hash

mdSsum 458b5ebe8clbflcaccd684e67eabb409

mdSdeep 458b5ebc8clbflcacc4684e67eabb409

shalsum 6beb9dSbfeb12fdf34aa33f0c258a72cach64995

Shaldeep 6beb9dbbfeb12fdf34aa33f0c258a72cach64995

tigerdeep 2laca239cefd99d2£f441eb3dd457689896175829251585971
sha256deep Thce318f4ce2833a02decbeded75c0b1164d1557567e55cc004£883276811d21

whirlpooldeep

d%ae3e0342558clflfclebbdifcfed®7ad4c932dddB86%9chbaldld773675946601fb

36
fefb292a895d97174757bbd85albefe5d1dB8e018b0£f5d3bblceac05dedlZf2£9

14/17

Summary

e Hash tools can give identical hashes to files with
different physical representations

— Hash tools at file system level ignore “sparseness”
. du detects file systems which support sparse files
— FAT and Minix do not support sparse files

e When invoked at file system level, tools should warn
the user about these possible inconsistencies

e Apart from challenging the integrity of the witness,
is this a problem ... ?

15/17

Attack Scenarios

e Scenario 1: Insider wants to steal information
— Insider prepares a large sparse file with the information
— Insider copies the file to a small removable device
— Insider replaces file with non-sparse file

- Insilgler claims: "I didn't steal the file - it doesn't fit on my USB
stick”

e Scenario 2: Insider wants to perform denial-of-service

— Insider prepares a huge non-sparse file which consumes a lot of
disk space

— Disk space is exhausted, causing service disruption
— Later insider replaces file with sparse version
— Insider claims: “It's not my fault, I created a sparse file”

e In both cases, if only hashes at file system level are stored,
attacker can tamper with evidence

16/17

References

e Brian Carrier: File System Forensic Analysis.
Addison-Wesley, 2005.

e Eoghan Casey: Digital Evidence and Computer
Crime: Forensic Science, Computers, and the
Internet. Academic Press, 2. Ed., 2004.

o Harish Daiya: Sparse file testing images. Available

Online at http://pil.informatik.uni-mannheim.de/
filepool/projects/hash-tool-testing/images.zip

17117

