#### Towards Reliable Rootkit Detection in Live Response

IMF, Stuttgart, September 2007

#### Felix C. Freiling

University of Mannheim, Germany

Bastian Schwittay Symantec (Deutschland) GmbH, Germany

### Motivation

- Traditional forensics use **dead** analysis
- Live Response captures data from **live** systems
- **Rootkits** change the behaviour of live systems
- **Goal**: Increase credibility of live response
- **Subgoal**: Sound methods for reliable rootkit detection during Live Reponse

# Agenda

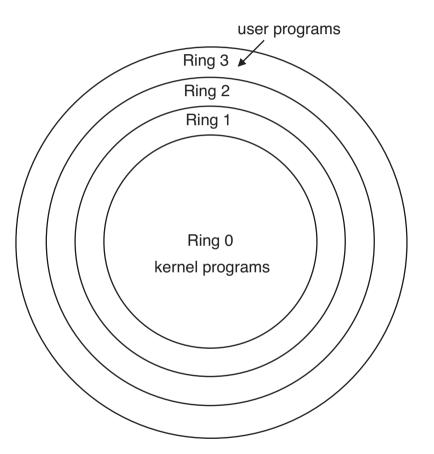
- Motivation
- Background
  - Live Response
  - Windows Rootkits
- Detection Experiments
- Results and Recommendations
- Summary and Discussion

### Live Response

- Volatile data is lost when powering down a computer
  - Running processes
  - Open network ports
  - Kernel modules loaded
  - RAM contents

— ...

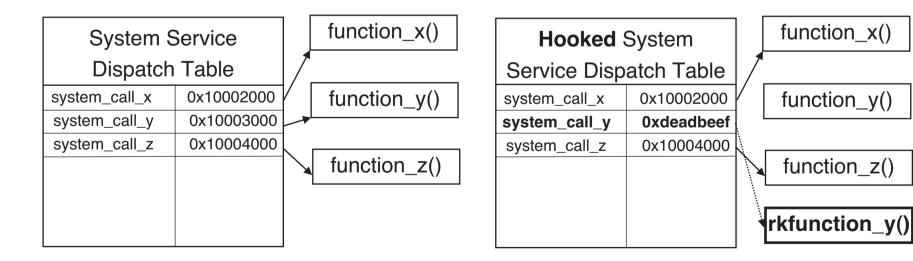
• Live Response includes all techniques that capture data from running systems


# Live Response Dilemma

- **Dilemma**: Live Response techniques alter the running system's state
- Acceptable only if alterations are wellunderstood
- Tradeoff between value of captured information and integrity of the evidence

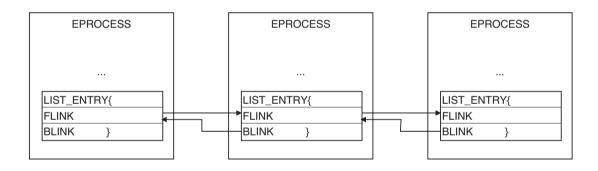
#### Windows Rootkits

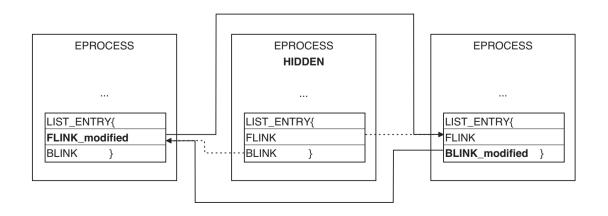
- "a set of programs and code that allows a permanent and undetectable presence on a computer" [Hoglund and Butler]
- Ultimate attacker's tool
- Stealth techniques to alter a running system:
  - Hide processes, files, drivers, ports etc.
  - Optionally include backdoors or keyloggers


### Windows Internals



- Ring 0 software has full system priviliges
- Kernel rootkits run in Ring 0
- Live Response tools mostly run in Ring 3
- In the presence of a rootkit, Live Response tools can not capture accurate data!


# Rootkit Techniques: Hooking


- "Hooking" alter the execution path of applications
- Example: SSDT Hooking



### Rootkit Techniques: DKOM

- "Direct Kernel Object Manipulation"
- Alter in-memory list of processes





9/19

### **Detection Tools**

- Use heuristics to discover inconsistencies in kernel
  - Discover hooks
  - Discover hidden kernel objects
- Some tools use cross view detection:
  - Compare output of API functions with results from parsing internal data structures

# Agenda

- Motivation
- Background
  - Live Response
  - Windows Rootkits
- Detection Experiments
- Results and Recommendations
- Summary and Discussion

# Experimental Setup (1/2)

- 11 different publicly available rootkits
  - Available from rootkit.org
- 12 different rootkit detectors
  - Using different heuristics
- 6 well-known Live Response tools
  - pslist, fport, netstat, psservice, find, regdmp
- 4 different flavors of Windows
  - Windows 2000 SP4
  - Windows XP (no updates)
  - Windows XP SP2
  - Windows 2003 Server SP1

# Experimental Setup (2/2)

- For each flavor of Windows do
  - For each rootkit do
    - If the rootkit offers file hiding capabilities create a hidden file
    - If the rootkit offers process hiding capabilities create a hidden process
    - If the rootkit ...
    - For each rootkit detector do
      - Check what hidden objects are detected
      - Revert system into original (infected) state
- Possible detection results:
  - No hidden objects detected
  - Some but not all hidden objects detected
  - All hidden objects detected

# Results (1/3)

- Severe compatibility problems with rootkits
  - "Best" platform was Windows XP SP2
- Also some compatibility problems with detectors

# Results (2/3)

|            | Rootkits |    |      |       |      |        |       |       |      |
|------------|----------|----|------|-------|------|--------|-------|-------|------|
| Detectors  | AFX      | FU | FUTo | HxDef | Klog | NtIll. | Vanq. | phide | HPHM |
| Darkspy    | 2        | 2  | 2    | 2     | _    | 2      | 2     | 2     | 2    |
| Flister    | 2        | _  |      | 0     |      | 2      | 2     | —     | —    |
| Blacklight | 2        | 2  | 0    | 2     |      | 2      | 2     | 2     | 2    |
| IceSword   | 2        | 2  | 2    | 2     |      | 2      | 2     | 2     | 2    |
| modgreper  | —        | —  |      | 1     |      | _      | _     | —     | _    |
| RKDetector | 2        | 2  | 0    | 0     |      | 2      | 0     | 2     | 2    |
| RKHA       | —        | _  |      |       |      | _      | _     | —     | 2    |
| RKRevealer | 2        | _  |      | 2     |      | 0      | 2     | —     | —    |
| SVV        | 2        | _  |      | 2     |      | 1      | 2     | —     | 1    |
| UnhackMe   | 2        | 0  | 0    | 2     |      | 1      | 2     | 0     | 2    |
| VICE       | 2        | —  | _    | 2     | _    | _      | 2     | —     | 2    |

0 = no detection, 1 = partial detection, 2 = complete detection, - = incompatible 15/19

# Results (3/3)

- Using the live reponse tools **none** of the hidden objects (files, processes, ports etc.) were detected
- Rootkit detection is necessary in live response!

#### Recommendations

- As of June 2006, the combination of the following three rootkit detectors offers complete detection:
  - Blacklight
  - IceSword
  - System Virginity Verifier (SVV)
- Good individual detection rate
- Redundancy in detection
- Different approaches result in resilience against implementation-specific attacks

# Methodology

- Experiments should be repeated and documented regularly
- Result in recommendation of rootkit detectors
- Examiners use this combination of rootkit detectors
- If no rootkit is found, hypothesis that a known rootkit was installed during live response can be refuted

# Summary

- Live response is becoming an integral part of incident response and digital forensics
- Rootkits subvert systems at a very low level, fooling classic live response tools
- Reliable rootkit detection is needed
- Proposed methodology combines different detection tools to achieve reliability
- What about Virtualization rootkits like Rutkowska's BluePill?

#### References

- Greg Hoglund and James Butler: Rootkits -Subverting the Windows Kernel. Addison-Wesley, 2005.
- Bastian Schwittay: Towards automating analysis in computer forensics. Diplomarbeit, RWTH Aachen, Department of Computer Science, 2006.

```
http://pi1.informatik.uni-mannheim.de/filepool/
theses/diplomarbeit-2006-schwittay.pdf
```