
1/19

Towards Reliable Rootkit Detection
in Live Response

IMF, Stuttgart, September 2007

Felix C. Freiling
University of Mannheim, Germany

Bastian Schwittay
Symantec (Deutschland) GmbH, Germany

2/19

Motivation

• Traditional forensics use dead analysis

• Live Response captures data from live systems

• Rootkits change the behaviour of live systems

• Goal: Increase credibility of live response

• Subgoal: Sound methods for reliable rootkit
detection during Live Reponse

3/19

Agenda

• Motivation

• Background

– Live Response

– Windows Rootkits

• Detection Experiments

• Results and Recommendations

• Summary and Discussion

4/19

Live Response

• Volatile data is lost when powering down a
computer

– Running processes

– Open network ports

– Kernel modules loaded

– RAM contents

– …

• Live Response includes all techniques that
capture data from running systems

5/19

Live Response Dilemma

• Dilemma: Live Response techniques alter the
running system‘s state

• Acceptable only if alterations are well-
understood

• Tradeoff between value of captured information
and integrity of the evidence

6/19

Windows Rootkits

• “a set of programs and code that allows a
permanent and undetectable presence on a
computer” [Hoglund and Butler]

• Ultimate attacker‘s tool

• Stealth techniques to alter a running system:

– Hide processes, files, drivers, ports etc.

– Optionally include backdoors or keyloggers

7/19

Windows Internals

• Ring 0 software has full
system priviliges

• Kernel rootkits run in
Ring 0

• Live Response tools
mostly run in Ring 3

• In the presence of a
rootkit, Live Response
tools can not capture
accurate data!

Ring 2

Ring 3

user programs

Ring 0

kernel programs

Ring 1

8/19

Rootkit Techniques: Hooking

• „Hooking“ – alter the execution path of
applications

• Example: SSDT Hooking

System Service

Dispatch Table

system_call_x 0x10002000

system_call_y 0x10003000

system_call_z 0x10004000

function_x()

function_y()

function_z()

Hooked System

Service Dispatch Table

system_call_x 0x10002000

system_call_z 0x10004000

system_call_y 0xdeadbeef

function_x()

function_y()

function_z()

rkfunction_y()

9/19

Rootkit Techniques: DKOM

• „Direct Kernel Object Manipulation“

• Alter in-memory list of processes

EPROCESS

...

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

BLINK }

FLINK_modified

EPROCESS

...

HIDDEN

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

FLINK

}BLINK_modified

10/19

Detection Tools

• Use heuristics to discover inconsistencies in
kernel

– Discover hooks

– Discover hidden kernel objects

• Some tools use cross view detection:

– Compare output of API functions with results from
parsing internal data structures

11/19

Agenda

• Motivation

• Background

– Live Response

– Windows Rootkits

• Detection Experiments

• Results and Recommendations

• Summary and Discussion

12/19

Experimental Setup (1/2)

• 11 different publicly available rootkits

– Available from rootkit.org

• 12 different rootkit detectors

– Using different heuristics

• 6 well-known Live Response tools

– pslist, fport, netstat, psservice, find, regdmp

• 4 different flavors of Windows

– Windows 2000 SP4

– Windows XP (no updates)

– Windows XP SP2

– Windows 2003 Server SP1

13/19

Experimental Setup (2/2)

• For each flavor of Windows do
– For each rootkit do

• If the rootkit offers file hiding capabilities create a hidden file

• If the rootkit offers process hiding capabilities create a hidden
process

• If the rootkit ...

• For each rootkit detector do
– Check what hidden objects are detected

– Revert system into original (infected) state

• Possible detection results:
– No hidden objects detected

– Some but not all hidden objects detected

– All hidden objects detected

14/19

Results (1/3)

• Severe compatibility problems with rootkits

– “Best” platform was Windows XP SP2

• Also some compatibility problems with detectors

15/19

0 = no detection, 1 = partial detection, 2 = complete detection, - = incompatible

Results (2/3)

16/19

Results (3/3)

• Using the live reponse tools none of the hidden
objects (files, processes, ports etc.) were
detected

• Rootkit detection is necessary in live response!

17/19

Recommendations

• As of June 2006, the combination of the
following three rootkit detectors offers complete
detection:

– Blacklight

– IceSword

– System Virginity Verifier (SVV)

• Good individual detection rate

• Redundancy in detection

• Different approaches result in resilience against
implementation-specific attacks

18/19

Methodology

• Experiments should be repeated and
documented regularly

• Result in recommendation of rootkit detectors

• Examiners use this combination of rootkit
detectors

• If no rootkit is found, hypothesis that a known
rootkit was installed during live response can be
refuted

19/19

Summary

• Live response is becoming an integral part of
incident response and digital forensics

• Rootkits subvert systems at a very low level,
fooling classic live response tools

• Reliable rootkit detection is needed

• Proposed methodology combines different
detection tools to achieve reliability

• What about Virtualization rootkits like
Rutkowska‘s BluePill?

20/19

References

• Greg Hoglund and James Butler: Rootkits -
Subverting the Windows Kernel. Addison-
Wesley, 2005.

• Bastian Schwittay: Towards automating analysis
in computer forensics. Diplomarbeit, RWTH
Aachen, Department of Computer Science,
2006.
http://pi1.informatik.uni-mannheim.de/filepool/

theses/diplomarbeit-2006-schwittay.pdf

