A Comparative Study of Teaching Forensics at a University Degree Level

Martin Mink University of Mannheim, Germany

> IMF 2006, Stuttgart October 19

Joint Work

- Laboratory for Dependable Distributed Systems
 - University of Mannheim/RWTH Aachen University
 - Maximillian Dornseif, Felix C. Freiling, Thorsten Holz, Martin Mink
- School of Computing, Engineering and Information Sciences
 - Northumbria University, U.K.
 - Philip Anderson, Alastair Irons, Christopher Laing

Outline

- Introduction and aim
- British case
- German case
- Comparison
- Conclusions

Introduction

- Need to develop specialists in computer forensics
 - determine where cybercrime may have taken place
 - examine the cybertrail
- Skills required
 - computer scientists trained to deal with various hard- and software systems
 - educated in law to assess relevant evidence
 - trained in the principles of forensic science
 - judge their actions in the context of psychological stress and possible own criminal activity

Introduction (2)

- Computer forensics at University degree level
 - programmes and courses
 - only few offered
 - differ
 - has a global aspect
 - national standards in computer forensics education are only of limited value

Aim

- Are international standards in computer forensics education possible?
- Compare University degree computer forensics curricula from two countries
 - Great Britain: full BSc honours programme in Computer Forensics at Northumbria University
 - Germany: area of specialization within a general Computer Science Diploma degree programme at RWTH Aachen University
 - no output in students yet, so compare design of the programmes

The British Case: Motivation

- Popular topic among students at Northumbria
- A number of members of academic staff already centered on computer forensics
 - growing body of knowledge
- Other groups of the School interested in the topic
- Interest by employer groups
- Raise popularity with potential students

Philosophy

- Address the need of law enforcement agencies and organisations for skilled professionals
- Focus on the principles of evidential integrity and the challenges of dealing with digital evidence
- Provide the knowledge to professionally and systematically preserve and extract all relevant digital evidence
- Prepare to use the principles defined by the Association of Chief Police Officers (ACPO)

Curriculum Design

- In collaboration with practitioners
 - to address the skills, techniques and theoretical requirements for graduates to work in the field
 - to ensure that students are immediately useful to their employers
- Analysis of historical cases, hypothetical case studies and cases made publicly available
- Computer forensics introduced in the first year, increasing the coverage until the final year
- Placement year between second and final year

Ethics and Interdisciplinary

Ethics

- students are made aware of
 - the potential for misuse of computer forensics tools and techniques and
 - the need for ethical and professional behaviour
- Inter disciplinary considerations
 - input from other Schools of the University
 - forensic science
 - criminal justice systems and criminal motivation
 - legal and evidentiary aspects

Equipment and Industry Relations

- Laboratory Facilities
 - hard- and software specific to comp. forensics
 - to develop practical skills using computer forensics tools
- Employer links
 - police forces and enterprises provide
 - expert knowledge through presentations and case studies and
 - placement and employment opportunities

First Year

120 points*

Sem. 1	Programming 1 (20 points)	Intro- duction to Computer Forensics and Crimino- logy (20 p.)	Rela- tional Data- bases (20 p.)	Learning and Skills (10 p.)	SW- and Data Model- ling (10 p.)
Sem. 2	Programming 2 (20 points)			Introd. to Inter- net Tech nologies (10 p.)	Computer system Fundamentals (10 p.)

^{*1} unit equiv. to about 15 working hours, ~ 0,5 ECTS

Second Year

120 points

Sem. 1	Dyna- mic Internet Techno- logies (20 p.)	Profes- sional Develop- ment (10 p.)	Net- works and Opera- ting Sys- tems (20 p.)	Data Struc- tures and Algo- rithms (20 p.)	Principles of Computer Forensics (20 points)
Sem. 2		Further Net- works (10 p.)			Computer Forensics Applications (20 points)

Last Year

120 points

Legal and Advanced evidenti-Computer Sem. **Applied** ary as-**Ethical Forensics** Profespects Hacking (20 points) sionalism (10 p.)for and Ma-Network nage-Security Comment **Forensics** Individual (20 p.)puter (20 p.)Sem. Case project Secu-**Project** (30 points) rity (10 p.)(10 p.)

The German Case: Motivation

- No graduate programmes specialized in computer forensics in continental europe
- Interest in computer forensics by staff members
- Developing a new degree programme specialized in forensics was not possible
 - due to restricted resources
 - instead: "area of specialization" within a traditional Computer Science Diploma programme

Two Semester Curriculum

88 points*

Sem. 1	App Comp Sec (20 pc	outer	Computer Forensics (12 p.)	Se- mi- nar (6 p.)	Other Courses from Computer Science	
Sem. 2	Web Appli- cation Security (10 p.)	Hacking Lab (20 points)		Summer School (20 points)		Other Courses

^{*}units have been calculated to the same unit as in the British case

First Semester

- Lecture "Applied Computer Security"
 - classical lecture presenting basics
 - security concepts on UNIX, network security
- Lecture "Computer Forensics"
- Research seminar
 - introducing security related issues
 - students give a presentation

Second Semester

- Lecture "Web Application Security"
 - teach, how insecure web applications can be broken
- Practical "Hacking Lab"
 - attack and defense of networked computers
- Summerschool "Applied IT Security"
 - advanced exploitation techniques

Computer Forensics

- Classic: gathering, interpretation and presentation of evidence found on computers
- But:
 - dependent on the legal system
 - literature and experiences only from countries with a different legal system
- Our definition: tool to understand security
 - ¬ ⇒ analysis of security incidents to improve security in the future

Computer Forensics (2)

- Students learn how to extract and interpret evidence and to evaluate the validity of that information
 - focus on file systems
 - analysis with only basic tools
 - should be able to develop their own tools
- Practical exercises:
 - give students the opportunity to experience different forensic techniques themselves
 - e.g. analysis of pre-used hard disks

Honeypots

- Honeypot
 - system without a task in the network
 - every interaction is a possible malicious action
- Can be used to provide real-world cases of computer incidents
 - analyse
 - data collected by honeypots
 - compromised system
 - honeynet.org: Scan of the month

Comparison: British

- More mature and better-developed (considering industrial needs)
 - higher amount of financial and personal resources
 - close cooperation with industry and law enforcement agencies
- Much more focussed on computer forensics
 - specialized BSc degree
- Strong inter disciplinary involvement
- Strongly motivated from best practices and rules of professional bodies

Comparison: German

- Part of a general computer science diploma degree
 - large freedom of choice for students
- Almost entirely focussed on computer science
- Motivated by questioning standard approaches and aiming for scientific discovery
- Educate computer scientists that can perform research in computer forensics and security

Conclusions and Outlook

- Two complementing and orthogonal aspects
 - rigorous practical skills and
 - competence for fundamental research
- Prototypical for the differences in the aim and scope of the two implementing Universities
- Future: conduct an empirical study of each of the two programmes on the skills and success of the students who successfully earned a degree