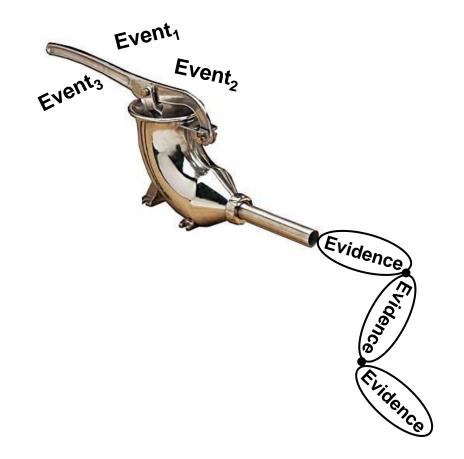
IIG Telematik Institut für Informatik und Gesellschaft Prof. Dr. Günter Müller

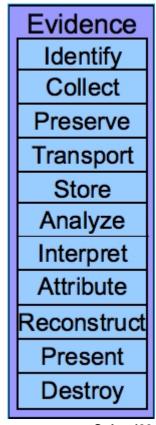

Safekeeping Digital Evidence with Secure Logging Protocols State of the Art and Challenges

Rafael Accorsi University of Freiburg, Germany accorsi@iig.uni-freiburg.de

IMF, September 2009

Logs = System activity

- System logs are omnipresent.
- Events record system activity i.e. "state transitions."
- Valuable source of evidence!
- But very tricky to bring to court.


Agenda

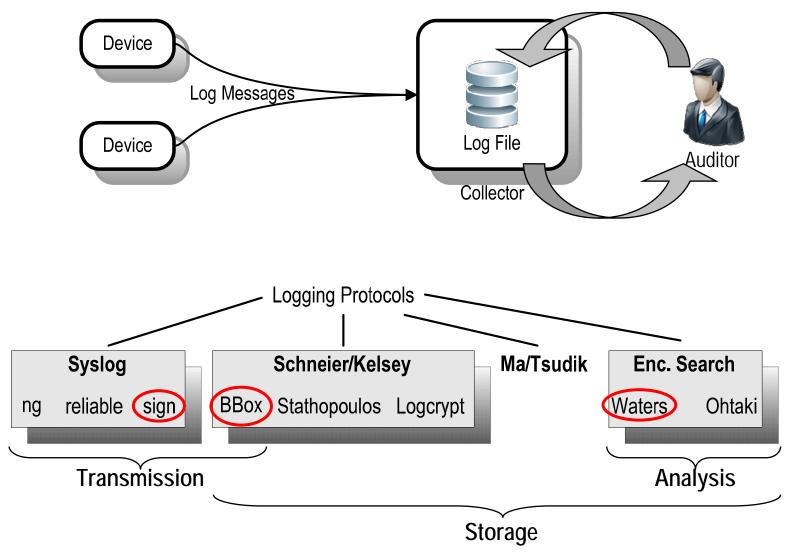
- On digital evidence.
- Admissibility and protection goals.
- Secure logging protocols: State of the art.
- Challenges.

Digital evidence

- Transmitted, stored and analyzed digital information that may be relied upon in court.
- Some criteria:
 - admissible.
 - relevant.
 - complete.
 - believable.
- Admissibility issue: missing consensus.

Cohen'09

Admissibility and protection goals


- Admissibility's bottom line: log data must be authentic. •
- **Transmission** phase: **Storage** phase:
 - event provenance.
 - message confidentiality.
 - message uniqueness.
 - reliable delivery.

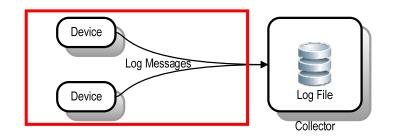
- - entry integrity, i.e.
 - accuracy.
 - completeness.
 - compactness.
 - entry confidentiality.

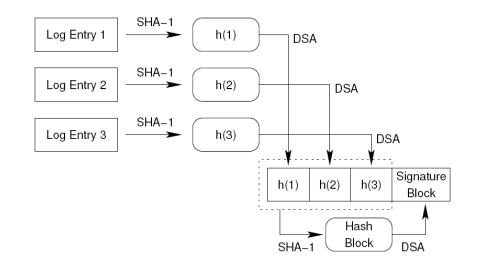
- Analysis phase: •
 - restrain information flow.

Architecture and Protocols

Syslog-Sign: Message transmission

Assumptions:


- underlying PKI.
- powerful devices.


Message authentication:

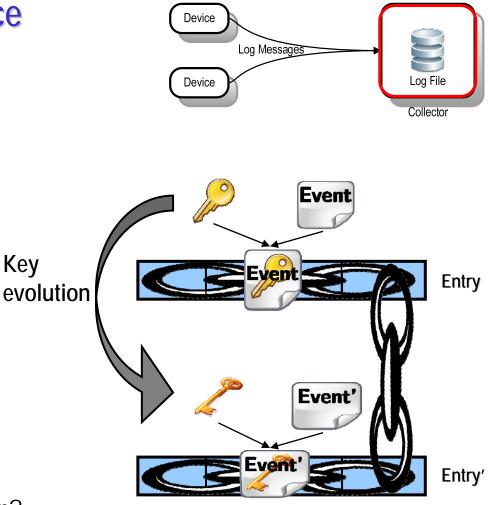
- "batch" operation.
- hashes of each event are signed (DSA).
- Signature block: signed "sum" of all previous hashes of the batch.

Issues:

- no payload encryption.
- deletion signature blocks after receipt.

BBox: Storage and tamper evidence

Crypto building blocks:


- symmetric encryption.
- checksums.
- evolving cryptographic keys.
- hash chain links signed with BBox' certificate.

Tamper detection

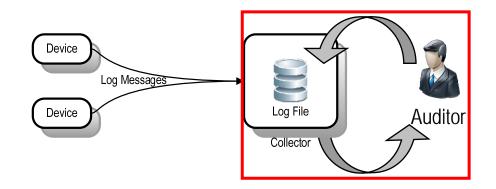
• checks the integrity of the chain.

Issues:

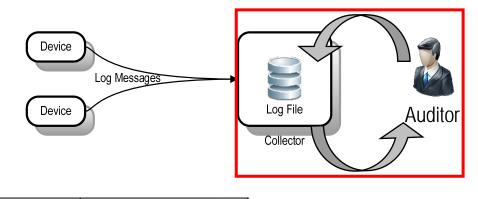
- what if one breaks the root of the chain?
- confidentiality of root key.
- difficult extraction of payloads.

Waters et al.: IBE encrypted search (I)

IBE: takes any string as public key.


Scheme:

- phases: storage and retrieval of entries.
- principals: key escrow *T* and investigators *V*.


Phase 1: Storage

- given an event *m*, extract the keywords *w*.
- generate private *K* based on keywords *w*.
- generate for each *w* the index c_w

$$R_{i} := \begin{bmatrix} E_{K_{i}}(m_{i}) & H(R_{i-1}) & c_{w_{a}}, c_{w_{b}}, c_{w_{c}} \end{bmatrix}$$

Waters et al.: IBE encrypted search (II)

$$R_i := \left| E_{K_i}(m_i) \right| H(R_{i-1}) \left| c_{w_a}, c_{w_b}, c_{w_c} \right|$$

Phase 2: Retrieval and decryption

- upon a query from *V* for the keyword *w*, generate "capability" d_w.
- *V* tests d_w against the indexes *c* of each entry.
 - *V* either obtains the key *K* or void information.

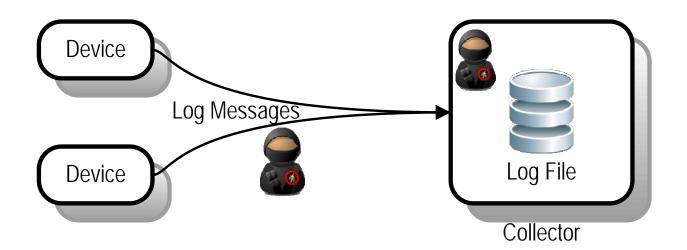
Issues:

- derivation of keywords not deterministic.
- operators (and/or/not) still not possible.
- no revocation of capabilities.

Protocols and protection goals

Secure logging protocol	Security Requirements							
	Transmission phase					Storage phase		
	confidentiality	or. authentication	integrity	uniqueness	rel. delivery	accountability	integrity	confidentiality
syslog	no	no	no	no	no	no	no	no
syslog-ng	yes	no	yes	no	yes	no	no	no
syslog-sign	no	yes	yes	yes	no	no	no	no
reliable syslog	yes	yes	yes	yes	yes	110	no	no
Schneier/Kelsey	no	no	no	no	no	yes	no	yes
Stathopoulus et al.	no	no	no	no	no	no	no	yes
BBox	yes	yes	yes	yes	yes	yes	yes	yes
Logcrypt	no	no	no	no	no	yes	yes	yes
Waters et al.	no	no	no	no	no	no	yes	yes
Ohtaki	no	no	no	no	no	yes	yes	yes
Ma/Tsudik	no	no	no	no	no	yes	yes	yes

- Despite protection, missing full authenticity.
- Subtle vulnerabilities \Rightarrow (undetectable) attacks \Rightarrow wrong Evidence.
- Assumptions are sometimes too strong or implicit.
- \rightsquigarrow Rigorous reasoning about protocols needed!


Open issues

- Obtaining reliable signals.
- Advanced adversarial models.
- Formal verification of logging protocols.
- Standard evidence formats.
- Consolidation of log data.
- Evidence mining.

Backup Slides

What's the threat model?

- Outsider can
 - read
 - compose
 - modify
 - block

log data in transit.

- Insider can
 - read
 - compose
 - modify
 - delete

log data <u>at rest</u>.