

From the Computer Incident Taxonomy to a Computer Forensic Examination

Stefan Kiltz¹, Robert Altschaffel², Jana Dittmann¹

¹Otto-von-Guericke-University Magdeburg Faculty of Computer Science Research Group on Multimedia and Security

²Otto-von-Guericke-University Magdeburg Faculty of Computer Science

Acknowledgement: we thank Mr. Carsten Schulz of the Federal Office for Information Security (BSI) for the kind support

- Motivation
- Basics
 - Our forensic model
 - CERT Taxonomy
- Forensic Examination Taxonomy (FET)
- Examples for using the Forensic Examination Taxonomy
 - Malicious activity
 - Non-malicious occurrences
- Conclusion

- Taxonomy Need for a common language to describe certain matters, sometimes inter-disciplinary (mutually exclusive, exhaustive, unambiguous, repeatable, accepted)
- Widely known CERT-Taxonomy describes a common language for malicious incidents
- Need for a Forensic Examination Taxonomy (FET) to find a common language for computer forensic examinations
- Could be used as a framework for the final report of a forensic examination

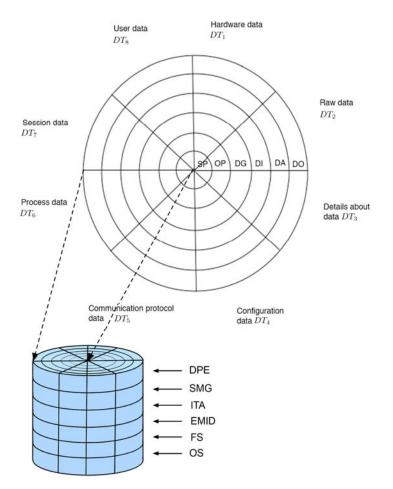
- Our aim: To extend the application of forensic measures whilst retaining the strict demands placed on IT-forensic investigations, e.g. non-alteration of evidence, comprehensive documentation
- Advantage is the inclusion of strategic preparation, i.e. the placement of measures to enhance results of investigations ahead of an incident
- Leads to the following definition:

IT-forensics is the strict methodological data analysis on storage devices and in IT-networks for the purpose of solving incidents employing the opportunities of strategic preparation from the viewpoint of the operator of an IT-system.

- IT-forensics according to our view is centred around five questions about an incident:
 - What has happened / is happening?
 - Where has it happened / is it happening?
 - When did it happen?
 - Which way did it happen?
 - What was / is the cause?
- FET can be an aid to ensure all questions had been addressed

5

- CERT taxonomy was used as a starting point
- Forensic examinations according to our viewpoint differ in that:
 - Not all incidents are malicious i.e. they are support cases
 - A forensic examination follows a timeline starting with a result, i.e. the symptom
- We use a self-developed model of the forensic process to comprehensively cover all aspects of the investigation

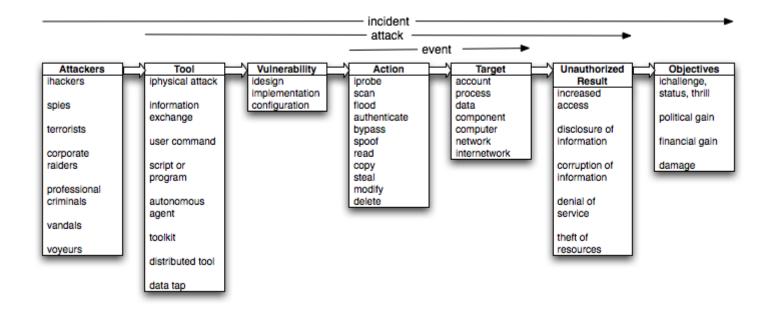

Basics - Our forensic model

- Separated into *Phases, Classes of methods, Forensic data types*
- Phases (mutual exclusive) are used to model sequence details during a forensic investigation, not a new approach (see [Fre07]) but novel phase of strategic preparation is included, being beneficial for the operator of an IT-system conducting a forensic investigation
- Classes of methods (mutual exclusive) classify forensic capabilities of software (e.g. a database application), not only dedicated forensic suites gather forensically relevant data - ensures independence from particular software solutions
- Forensic datatypes, a layered approach similar to ISO/OSI model (not mutual exclusive), used to determine input and output data of forensic tools/methods, describe the forensically relevant data as a data source

[Fre07] F. Freiling, A Common Process Model for Incident Response and Digital Forensics, Proceedings of the IMF2007, 2007

Our forensic model (cont'd)

- Phases :
 - Strategic preparation (SP)
 - Operational preparation (OP)
 - Data gathering (DG)
 - Data investigation (DI)
 - Documentation (DO)
- Classes of methods:
 - Operating system (OS)
 - File system (FS)
 - Explixit means of Intrusion detection (EMID)
 - IT application (ITA)
 - Scaling methods for evidence gathering (SG)
 - Data Processing and Evaluation (DPE)



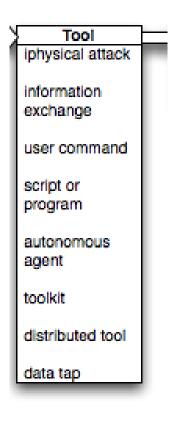
Our forensic model (cont'd)

- Forensic datatypes:
 - Hardware data (DT_1)
 - Raw data (DT_2)
 - Details about data (DT_3)
 - Configuration data (DT_4)
 - Communication protocol data (DT_5)
 - Process data (DT_6)
 - Session data (DT_7)
 - User data (DT_8)

Basics - CERT Taxonomy

Taken from : J. D. Howard and T. A. Longstaff, "A common language for computer security incidents (sand98-8667)," Sandia National Laboratories, Tech. Rep. ISBN 0-201-63346-9, 1998.

Attackers


- Renamed category as Origin
- Added Malfunctioning Hardware and Malfunctioning Software
- Added Lack of Resources
- Grouped all user-based incidents as User
- The category is both exhaustive and mutually exclusive

- User command and script or program also cover non-malicious activities
- Added Information exchange to address social engineering
- The category is both exhaustive and mutually exclusive
- Problems arise with the granularity of the items

Tool

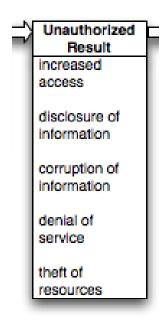
Vulnerability

- Added human behaviour to include nontechnical means of unauthorised access and modification
- information gathering such as social engineering
- No need for an item such as hardware erosion, boils down to design, implementation or configuration vulnerabilities
- The category is both exhaustive and mutually exclusive

- FET covers also for non-malicious incidents
- Added disable to address hardware and software failures
 - to ensure completeness
- Necessary because modification would render the category non-mutual exclusive

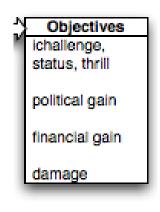
Action	
iprobe	
scan	
flood	
authenticate	
bypass	
spoot	
read	
сору	
steal	
modify	
delete	

Target


- Account and data from the CERT taxonomy were not considered mutual exclusive
- Partly used the forensic data types to model targets
- Added Process
- Added User Data, Configuration Data and Session Data
- Kept Component, Computer, Network and Internetwork

Ŋ	Target	
P	account	
	process	
	data	
	component	
	computer	
	network	
	internetwork	

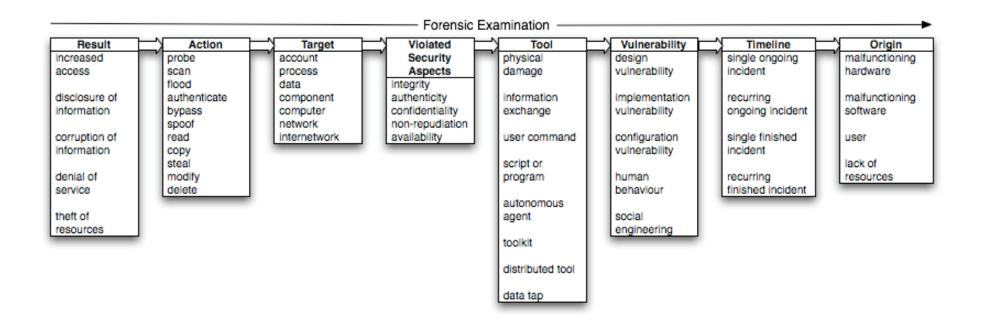
Result


- Added the Security Aspects as another category
- Integrity, Authenticity, Confidentiality, Non-Repudiation, Availability
- Remaining problem: non-malicious incidents cannot be always described using security aspects, although some security aspects share a similarity with safety aspects (e.g. Integrity)

Objective

- It is not the task of the examiner to judge intensions of malicious attackers
- Also, with data from an IT-system alone it is impossible to tie evidence to a particular individual let alone an objective
- So this category is dropped in the FET

Timeline


- New category not present in the original CERT Taxonomy
- Added to reflect a very important aspect of forensic investigations - time
- Separated into:
 - single finished incident
 - recurring finished incident
 - single ongoing incident
 - recurring ongoing incident

18

Advanced Multimedia and Secur

Forensic Examination

Examples - malicious activity

- Scenario: unknown perl scripts executed on a webserver on a linux-based system noticed by an unavailable website -> result
- Position and MAC times of the script and logfiles of the webserver were investigated
- Attacker modified the system behaviour by providing an external configuration file

Result		Action	Target	Violated Secu-	Tool	Vulnerability	Timeline	Origin
				rity Aspects				
theft o	of	modify	computer	availability	user command	configuration	single finished	user
resources						vulnerability	incident	

Examples - non-malicious

- Scenario: A linux-based system is rendered unusable through lack of main memory
- Logfiles show increased amount of visitors beyond the capacity of the system
- Configuration vulnerability in allowing the webserver to spawn more processes than the system could handle
- System needed to be shut down, with that the incident was finished

Result	Action	Target	Violated Secu-	Tool	Vulnerability	Timeline	Origin
			rity Aspects				
denial of ser-	flood	computer	availability	script or pro-	configuration	single finished	lack of
vice		-		gram	vulnerability	incident	resources

Conclusion

- We showed the need for a Forensic Examination Taxonomy to aid in assuring the comprehensiveness of an investigation
- Non-malicious activity was added to open forensic investigations to the field of support cases whilst retaining the strict methodological principles of criminal investigations
- We showed how the CERT taxonomy could be adapted to fulfil the requirements of forensic examinations
- Categories had to be altered, removed and added as well as the sequence thereof to incorporate the forensic proceedings
- Further research necessary esp. in the granularity of the items in the categories

22

• Exhaustiveness is a big problem, FET needs to be updated constantly

Thank you for your attention!